
Galaxy-II as an Architecture for
Spoken Dialogue Evaluation

Joseph Polifroni and Stephanie Seneff

Spoken Language Systems Group
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139 USA
fjoe, seneffg@lcs.mit.edu

Abstract
The GALAXY -II architecture, comprised of a centralized hub mediating the interaction among a suite of human language technology
servers, provides both a useful tool for implementing systems and also a streamlined way of configuring the evaluation of these systems.
In this paper, we discuss our ongoing efforts in evaluation of spoken dialogue systems, with particular attention to the way in which the
architecture facilitates the development of a variety of evaluation configurations. We furthermore propose two new metrics for automatic
evaluation of the discourse and dialogue components of a spoken dialogue system, which we call “user frustration” and “information bit
rate.”

1. Introduction
Through our experience over the last decade in design-

ing spoken dialogue systems, we have come to realize that
an essential element in being able to rapidly configure new
systems is to allow as many aspects of the system design as
possible to be specifiable without modifying source code.
To this end, we recently redesigned our core architecture to
support complex system configurations controlled by a run-
time executable scripting language. Using this new frame-
work, which we call “GALAXY -II ” (Seneff et al., 1998),
we have been able to configure multi-modal, multi-domain,
multi-user, and multilingual systems with much less effort
than previously. We are discovering that we can now con-
figure systems whose capabilities are well beyond what was
previously considered feasible1.

As new and increasingly complex spoken dialogue sys-
tems are built, the task of evaluating these systems becomes
both more important and more difficult. In the first place,
component technologies are interdependent. Typically, a
spoken dialogue system is comprised of multiple modules,
each of which performs its task within an overall frame-
work, sometimes completely independently but most often
with input from other modules. Secondly, once a mecha-
nism is in place for running data through an off-line sys-
tem, a simple reprocessing of data with a new version of
any component can lead to an incoherent interaction, as
only one side of a two-sided conversation has changed. Fi-
nally, there is the question of what to evaluate (e.g., individ-
ual component vs. overall system behavior) and how (error
rates vs. some measure of usability).

This paper describes our efforts to expand the appli-
cability of theGALAXY -II scripting language, initially de-
veloped to configure dialogue systems that interface with
users, to also support evaluation runs that assess the perfor-
mance over time of both entire systems and specific system

1GALAXY -II has been designated as the initial common ar-
chitecture for the multi-site DARPA Communicator project in the
United States.

Speech
Recognition

Speech
Recognition

Text-to-Speech
Conversion

Text-to-Speech
Conversion

Hub

Language
Generation
Language

Generation

Dialogue
Manager
Dialogue
Manager

DatabaseDatabaseAudio/GUI
Servers

Audio/GUI
Servers

Discourse
Resolution
Discourse
Resolution

Language
Understanding

Language
Understanding

Figure 1: A typical configuration of a spoken dialogue sys-
tem, showing the central hub and the various specialized
servers.

components. The focus of the paper will be on the resulting
tools we have developed within theGALAXY -II architecture
for evaluating spoken dialogue systems. These tools consist
mainly of a suite of hub programs, which allow us to rapidly
configure several different combinations of servers for var-
ious evaluation runs, including two specialized servers de-
signed to augment evaluation capabilities. We will also dis-
cuss two new metrics we have devised for the automatic
evaluation of the discourse and dialogue component of our
systems.

2. Galaxy-II Architecture
The GALAXY -II (Seneffet al., 1999) architecture con-

sists of a central hub that controls the flow of information
among a suite of servers, which may be running on the
same machine or at remote locations. Figure 1 shows a typ-
ical hub configuration for a generic spoken dialogue sys-
tem. The hub interaction with the servers is controlled via



RULE: :ref_tried & :rec_tried & !:rec_score --> evaluate_rec_string
LOG_IN: :sro_string :rec_string
IN: (:ref_string :sro_string) (:hyp_string :rec_string) \

:eval_mode :sro_status :rec_status
OUT: :rec_score :ref_string :hyp_string
LOG_OUT: :rec_score

Table 1: An example rule in a hub program that invokes the evaluation server operation,evaluaterec string. The rule
provides a reference and hypothesis string as input, and records in a log file the resulting recognition score, as well as the
pair of strings being compared.

a scripting language. A hub program includes a list of the
activeservers, specifying the host, port, and set of opera-
tions each server supports, as well as a set of one or more
programs. Each program consists of a set ofrules, where
each rule specifies anoperation, a set ofconditionsunder
which that rule should “fire,” a list ofINPUT andOUTPUT

variablesfor the rule, as well as optionalSTORE/RETRIEVE

variables into/from the discourse history. When a rule fires,
the input variables are packaged into atokenand sent to
the server that handles the operation. The hub expects the
server to return a token containing the output variables at a
later time. The variables are all recorded in a hub-internal
master token. The conditions consist of simple logical
and/or arithmetic tests on the values of the typed variables
in the master token. The hub communicates with the vari-
ous servers via a standardized frame-based protocol.

TheGALAXY -II architecture has proven to be a power-
ful tool for evaluation. It has made possible a wide range of
system configurations specifically designed for monitoring
system performance resulting in a suite of hub programs
concerned with evaluation. In some cases, we are only in-
terested in evaluating a particular aspect of system perfor-
mance, such as recognition or understanding. In other cases
we’re interested in assessing the performance of the entire
system, perhaps comparing a new version with the version
that existed at the time a log file was first created. At other
times we might be interested in looking at ways of mea-
suring system performance as it relates to user satisfaction,
along measurable dimensions. We also routinely run large
numbers of queries through a system in a batch mode, to
assure system robustness, particularly prior to the release
of a new version.

In the following section, we will describe how we con-
figure architectures that utilize these servers for various
types of evaluation. Section 4 describes previous work in
evaluating understanding accuracy and how theGALAXY -
II architecture has enabled us to streamline the procedures.
Section 5 describes new metrics we have devised to au-
tomatically evaluate overall dialogue performance. After
summarizing other miscellaneous but significant aspects of
evaluation, we conclude with a look towards the future.

3. Programming Evaluation Runs
We have been concerned for some time with develop-

ing and maintaining a way of continually evaluating our
systems, both holistically and at the component level. The
new hub-based architecture has enabled us to streamline the
evaluation process by making it subject to the same hub

programs that control all other system functions. It has also
allowed us to augment our suite of evaluation metrics, since
an evaluation server can take input from any of the other
component servers within the system that we wish to eval-
uate.

The interaction among the servers in a spoken dialogue
system can be quite complicated. We feel it is very im-
portant for off-line runs on training and development data
to match as closely as possible the on-line system con-
figuration. The transparency that theGALAXY -II archi-
tecture provides to the system developer makes it easy to
accomplish this goal. The ability to program the interac-
tion of servers means that these modules can run as servers
the same way in both on-line and off-line (batch) modes.
No explicit code changes or run-time flags are needed for
the servers to run in evaluation mode. Furthermore, the
changes necessary to configure a system for a specific type
of evaluation are usually localized to a few lines in a top-
level hub program, with the constituent programs being
identical to those of a live system.

In order to perform these types of evaluation runs, we
have developed two new servers that play an important
role: a “batchmode” server and an “evaluation” server. The
batchmode server stands in place of a user interface; it ex-
tracts appropriate inputs from a log file and initiates dia-
logue turns. The evaluation server tabulates performance
statistics on a wide range of metrics, and writes a final sum-
mary into the resultant second-generation log file.

3.1. Batchmode Server

The purpose of the batchmode server is to process user
queries through the system off-line. It operates from a va-
riety of different inputs, including orthographic transcrip-
tions,N -best lists, word graphs, parse frames, waveform
files, and even system log files created from previous live
interactions. A hub program can be configured to produce
a log file using any of the above inputs, alone or in combi-
nation. A batchmode run often includes calls to a special
evaluation server, as described below.

Every conversation with our live systems is recorded in
a logfile, at a level of detail that is controlled by the hub
program. The program supports the specification of any in-
put or output variables to be written to the log, associated
with each rule as it fires. A subsequent evaluation program
informs the batchmode server which elements from the log-
file are of interest in a particular run. For example, in as-
sessing run-time performance, the batchmode server must
extract both the selected hypothesis and the transcription of



Speech
Recognition

Speech
Recognition

Batchmode
Server

Batchmode
Server Hub

Discourse
Resolution
Discourse
Resolution

Language
Understanding

Language
Understanding

Language
Generation
Language

Generation

EvaluateEvaluate

Figure 2: AGALAXY -II configuration showing the servers
involved in evaluating recognition and understanding per-
formance.

the user’s speech from the logfile. TheGALAXY -II archi-
tecture, combined with the hub scripting language, made
control straightforward for this type of logfile evaluation.

We can also use the batchmode server to reprocess
stored waveform files. In this case, the batchmode server
behaves like an audio server, invoking the module-to-
module communication protocol to connect to a recognizer.
The recognizer processes the stored waveform file as it
would any other utterance, i.e., producing either anN -best
hypothesis or a word graph. This representation is sent back
to the hub where it follows the path determined by a stan-
dard hub program for processing.

3.2. Evaluation Server

As mentioned previously, we have developed a separate
evaluation server for performing comparisons and accumu-
lating performance statistics. This server can determine
both word error rate2 and concept error rate, where the latter
is based on an E-form representation of the understood user
query. As will be discussed later in this paper, we have also
developed two additional metrics that we feel may be use-
ful for evaluating the discourse and dialogue components
as well as the recognizer and understanding components.
We call these the “user frustration” measure and the “infor-
mation bit rate.” The tabulations needed to compute these
measures are maintained in the evaluation server.

We can easily configure hub programs that run multi-
ple versions of the same server, to compare new versions
of the recognizer against old ones, for example, or to com-
pare two versions of a particular grammar. Furthermore,
the rules of a hub program provide a clear tabulation of the
parameters being evaluated. An example of a rule invoking
an evaluation server operation is given in Table 1.

2Using the standard National Institute of Standards and Tech-
nology scoring algorithm as a library for this purpose.

4. Automatic Methods for Understanding
Evaluation

In (Polifroniet al., 1998) we proposed an E-form evalu-
ation metric, which compares an E-form obtained by pars-
ing the original orthography against that obtained by pars-
ing the selected recognizer hypothesis. At that time, the
evaluation process was fragmented into a number of se-
quential isolated steps. The original recognition outputs
were retreived from a session log file. New recognition
outputs were created through a stand-alone process and
saved out to a file. The interaction between the recogni-
tion and NL components, currently mediated by the hub,
had to be essentially simulated in a special stand-alone pro-
cess. This process included the natural language library
and performed the parsing and E-form generation steps.
The process of synchronizing with the context information
recorded in the original log file and the new recognition
outputs was cumbersome and idiosyncratic.

Since we believe that E-form evaluation is a powerful
metric for monitoring the performance of the recognizer
and the parser, it has served as a good test case for the feasi-
bility of using hub programs to run evaluation procedures.
We found that theGALAXY -II architecture provided effec-
tive tools to streamline and generalize the process.

For assessing overall system understanding, we have
written a hub program that first uses the batchmode server
to process a logfile utterance-by-utterance, sending both a
hypothesis and an orthographic transcription to the hub,
with subsequent routing toTINA (Seneff, 1992) andGENE-
SIS(Glasset al., 1994), our natural language understanding
and generation components, respectively. Once the appro-
priate inputs are created, the hub program sends them to the
evaluation server, where they are used to assign scores. The
results are returned to the hub program along with all other
relevant data for a particular utterance for logging purposes.
The evaluation server also outputs cumulative statistics at
the end of each batch run. An appropriate hub configuration
for performing this type of evaluation is shown in Figure 2.
Notice that the batchmode server replaces the audio server
in this figure, and that various other servers concerned with
processing beyond the NL component are missing.

The hypothesis can be either the original one produced
at the time the data were collected, or a new one produced
with an updated version of the recognizer and/or of the
parser. Two different configurations can be run in parallel to
help assess which one is exhibiting a superior performance.
Among the evaluation experiments we have run are: (1)
logfile recognition/understanding performance at run-time,
(2) word graphs compared withN -best lists, and (3) com-
parisons of old and new versions of a grammar. We have
been able to use the same hub program for evaluating many
different types of input conditions, by simply adjusting a
few top-level variables.

5. Automatic Methods for Dialogue
Evaluation

We have found that it is extremely useful to be able to
rerun data through dialogue systems to monitor progress.
We have thus acquired large corpora of speech data, tran-
scriptions, and dialogue session logs, all of which are used



for confirming that new versions of our systems are healthy
prior to their release. A minimal test is that there are no
catastrophic failures (e.g., server crashes). More detailed
confirmation of performance can be obtained in some cases
through direct string comparisons of system responses, al-
though care must be taken to ensure repeatability. It is also
productive to examine the outputs of the batch runs man-
ually on an utterance-by-utterance basis, although this is
inefficient. We have therefore been motivated to establish
parameters that can capture quantitative performance auto-
matically. In this section, we first discuss some of the issues
that arose in reprocessing logged data, and then describe the
automatic metrics we devised for dialogue evaluation.

5.1. Issues in Reprocessing Data

The chief purpose of reprocessing data is to monitor
system performance, in order to verify that a new version
of the system is functioning well. With real database-query
systems, this becomes problematic because they provide
timely information that is dynamic in nature. For example,
as a flight database changes, queries based on the flights
available at data collection time can become incoherent.
Furthermore, users frequently ask about flights in the very
near future, which then become past events when the sys-
tem is rerun at a later time. Finally, the outputs of batch
runs are subject to incoherence due to changes over time in
the dialogue model, or simply improvements in recognition
and understanding.

We have developed various mechanisms for dealing
with these problems. One such problem is the changing
nature of the information we provide to users. Weather in-
formation for our Jupiter domain (Zueet al., 2000), though
timely, did not pose as much of a problem in this regard,
since we harvest the weather information several times per
day, parse it into a meaning representation that the system
backend can understand, and then store a representation of
the data in a relational database. It is not difficult to peri-
odically store a frozen version of the database tables, along
with ancillary files containing weather information, for fu-
ture processing. We then need only change the pointers to
files used by the database server when processing data in
batch mode. We also have to inform the Jupiter backend of
what date to consider as “today” so that references to rel-
ative dates in user queries are properly interpreted by the
backend. We then expect identical answers for repeatable
runs, aside from any changes that may have occurred in the
system during the intervening development period.

We were faced with a bigger problem in reprocessing
queries to our Pegasus flight status system and our Mer-
cury flight schedule system (Seneff & Polifroni, 2000).
To answer these queries, we access information dynami-
cally, from content providers who either continually up-
date a locally maintained database or who give us privi-
leged access to their information. These data are impos-
sible to freeze, since they either change on a minute-by-
minute basis (i.e., the flight status information) or repre-
sent too large and complex a corpus to characterize and ac-
cess completely (i.e., flight schedules for hundreds of cities
worldwide). However, these data are extremely timely and
the type and nature of follow-up queries are completely de-

N-best List Discourse
Parse
and

Select

Orthography DiscourseParse

Compare &
TabulateContext

Dialogue
Management

Received
Eform

Intended
Eform

Log File

Dialogue
Management

Figure 3: A flow graph of the procedure for computing in-
formation bit rate and user frustration.

Speech
Recognition

Speech
Recognition

Language
Generation
Language

Generation

Dialogue
Manager
Dialogue
Manager

DatabaseDatabase

Discourse
Resolution
Discourse
Resolution

Language
Understanding

Language
Understanding

Batchmode
Server

Batchmode
Server

EvaluateEvaluate

Hub

Figure 4: AGALAXY -II configuration showing the servers
involved in evaluating discourse and dialogue performance
using information bit rate and user frustration measures (see
text for details).

pendent on the information that the user heard at the time
of data collection.

In the flight reservation domain, another serious prob-
lem with reruns is that the dates the user specified quickly
become stale due to elapsed time. One solution we have
found is to artificially offset all date references during the
evaluation phase byN weeks, whereN is a number guar-
anteed to place all dates in the future, relative to the repro-
cessing date. We still may run into other problems due to
seasonal changes in flight availability, and it is unclear how
long we can continue to reprocess data in this way given
that flight numbers and even airlines change. For example,
in one case the user said, “Book it,” in response to a sin-
gle flight being proposed, but due to changes in the flight
schedule, the system proposed three flights in the rerun and
the dialogue became incoherent from that point on. How-
ever, we have been reasonably successful up to now by sim-
ply moving the date forward and maintaining the same day
of the week. In this case, of course, a simple string com-
pare on the responses will no longer be viable as a means of
assuring system stability; instead, system developers must
examine the script of the second-generation dialogue to as-
sess the system’s capabilities.



1a U: I’D LIKE TO FLY FROM SEATTLE TO
CHICAGO ON DECEMBER TWENTY SEVENTH

1b M: From Seattle to Chicago on December 22nd.
Can you specify a time or airline preference?

2a U: I SAID DECEMBER TWENTY SEVENTH
2b M: From Seattle to Chicago on December 27th.

Can you specify a time or airline preference?

Table 2: Example of a short dialogue containing an error in
the Mercury flight travel domain. U = User, M = Mercury.

IBR: 0 1 2 3 4 total
Nutts: 41 90 55 31 9 226

Table 3: Distribution of evaluable user utterances in terms
of number of new attributes introduced with each dialogue
turn. IBR = Information Bit Rate.

5.2. Proposed Evaluation Metrics

We have long been interested in seeking automatic eval-
uation metrics that can apply on a per-utterance basis but
evaluate a significant portion of the system beyond the rec-
ognizer. To this end, we recently devised two new eval-
uation metrics, which we believe are useful measures for
assessing the performance of the recognizer, parser, dis-
course, and dialogue components, collectively. To com-
pute the measures, we must reprocess the log file after the
orthographic transcription has been provided for the user
queries. As illustrated in Figure 3, both the recognizer hy-
pothesis and the original orthography are run through the
system utterance by utterance, with the discourse and dia-
logue states being maintained exclusively by the recognizer
branch. For both branches, the E-form that is produced af-
ter the dialogue manager has finished processing the query
is sent to the evaluation server. This server maintains a run-
ning record of all the attributes that appear in the orthogra-
phy path, comparing them against their counterparts in the
recognizer path. Figure 4 shows a hub configured for this
type of evaluation. The only server that is not represented at
least functionally in this diagram, as compared with a regu-
lar system configuration, is the speech synthesis server. The
batchmode server here can provide either a waveform or an
N -best list for processing by the NLU component.

The two parameters that emerge from comparing these
E-forms we refer to as information bit rate (IBR) and user
frustration (UF). IBR measures the average number of new
attributes introduced per user query. A subsequent query
that reiterates the same attribute is excluded since it does
not introduce any new information. The UF parameter tab-
ulates how many turns it took, on average, for an intended
attribute to be transmitted successfully to the system.

Take, for example, the dialogue in Table 2. A recog-
nition error occurs on the date in turn 1, where the sys-
tem misrecognizes “december twenty seventh” as “decem-
ber twenty second.” A subsequent dialogue turn is required
to repair this error. In the scheme outlined above, the first
utterance introduces three new concepts (i.e., source, des-
tination, and date). The second utterance introduces none,
thus contributing a 0 count to the IBR parameter. For the

user frustration parameter, source and destination each took
one turn, but the date took two.

In a pilot study, we processed a subset of our data
through this evaluation configuration. We identified a set
of 17 attributes that could be monitored. Five percent of
the utterances had orthographies that failed to parse. These
are unevaluable without human reannotation, and are hence
eliminated from the pool in the discussion below, although
they clearly are likely to be very problematic. Table 3 sum-
marizes the results for information bit rate for the remain-
der of the utterances. The average information bit rate was
1.46 concepts per utterance. A surprisingly large percent-
age of the utterances introduce no new concepts. Some, but
not all, of these are similar to the date misrecognition ex-
ample given above. Others are cases where the user was
confused about the state of the system’s knowledge, and
decided to simply repeat all the preceding constraints just
to make sure. Some are also misfirings of the endpoint de-
tector producing content-free utterances such as “okay.” In
other cases the user intended an action, but the system’s un-
derstanding mechanism was not sophisticated enough (e.g.,
“That’s good” meaning “book it”). We were encouraged by
the percentage of sentences that contained more than one
attribute. We believe that a typical directed dialogue would
have far fewer utterances with more than one attribute.

Excluding the 5% of utterances whose orthography
failed to parse, our system achieved a 1.05% user frustra-
tion rate. This means that, on average, one out of every 20
attributes had to be entered twice.

6. Miscellaneous Features
There are a number of aspects of theGALAXY -II archi-

tecture that enable better troubleshooting capabilities and
the flexibility to configure partial systems to focus on par-
ticular components. Here we briefly discuss two such ex-
amples.

It turned out to be relatively straightforward to use a hub
program to provide spoken feedback to users and develop-
ers when a major system error occurs. When a particular
server crashes, the resulting disconnect with the hub causes
an abort message to be generated. The hub then sends a
message to the audio server, to inform it to disconnect the
call. Rather than abruptly terminating the call, however, the
audio server is able to relay to the user a message providing
information about which server caused the problem, along
with an apology (e.g., “I’m sorry. Our content provider is
currently unavailable. Please call back later.”).

The flexibility of the GALAXY -II architecture has also
enabled us to develop hub programs for development runs
to evaluate any aspect of system development. We recently
needed to check the output of a synthesizer that was under
development in our group (Yi & Glass, 1998). By script-
ing the hub session to take typed input and produce and
speak a synthesized answer through local audio output, we
were able to quickly cycle through a set of queries to tar-
get the sorts of responses we were interested in checking,
without involving a phone line. We can also use hub scripts
to bypass the initial stages of the system entirely and run
a session from reply frames only. These reply frames are
sent to the NL component for generation and then on to the



synthesizer for speaking. We are able to check hundreds of
different responses in one session in this way. We are using
this facility, for example, to test the pronunciation and lin-
guistic well-formedness of responses in the Jupiter weather
domain produced in Spanish.

7. Summary and Future Work
We have found that theGALAXY -II architecture has pro-

vided a unified mechanism for performing the many differ-
ent types of evaluation required for monitoring and under-
standing the performance of a complex system. We plan
to extend our use of theGALAXY -II architecture in several
ways. One is in monitoring the performance of on-line sys-
tems. A hub program could, for example, notice that a ses-
sion is particularly problematic (e.g., by noticing a large
number of help or error response messages) and send mail
to system developers with a pointer to the logged record of
the session. Furthermore, the hub maintains a record of the
state of each particular server within a given configuration.
Though we have developed a “keep-alive” mechanism for
insuring that all servers come back to life after crashes, it is
useful to know when these crashes occur and what state the
system was in at the time. The hub, with its knowledge of
each particular server, could send mail to system develop-
ers in cases of server crashes, as well. One final way we are
looking into adding to our evaluation suite is in the multi-
lingual versions of our various systems. Because the hub is
able to mediate a seamless switch among all the languages
under development, we feel it will be useful in comparing
and evaluating the performance of each.

8. Acknowledgements
This research was supported by DARPA under contract

N66001-99-1-8904, monitored through Naval Command,
Control, and Ocean Surveillance Center.

9. References
Glass, J., J. Polifroni, and S. Seneff, 1994. “Multilingual

Language Generation across Multiple Domains”Proc.
ICSLP, ’94, 983–986.

Polifroni, J., S. Seneff, J. Glass, and T.J. Hazen, 1998.
”Evaluation Methodology for a Telephone-based Con-
versational System,”Proc. LREC ’98, 43–50.

Seneff, S., 1992. “TINA: a Natural Language System for
Spoken Language Applications,”Computational Lin-
guistics, 18:61–68.

Seneff, S., E. Hurley, R. Lau, C. Pao, P. Schmid, and V.
Zue, 1998. “GALAXY -II : A Reference Architecture for
Conversational System Development,”Proc. ICSLP ’98,
931–934.

Seneff, S., R. Lau, and J. Polifroni, 1999. ”Organization,
Communication, and Control in theGALAXY -II Conver-
sational System,”Proc. Eurospeech ’99, 1271–1274.

Seneff, S., and J. Polifroni, 2000. “Dialogue Manage-
ment in the Mercury Flight Reservation System,”Proc.
ANLP-NAACL2000 Workshop Workshop on Conversa-
tional Systems, to appear.

Yi, J.R.W., and J. Glass, 1998. “Natural-sounding Speech
Synthesis Using Variable-length Units,”Proc. ICSLP
’98, 1167-1170.

Zue, V., S. Seneff, J. Glass, J. Polifroni, C. Pao, T.J. Hazen,
and L. Hetherington, 2000. “JUPITER: A Telephone-
Based Conversational Interface for Weather Informa-
tion,” IEEE Trans. on Speech and Audio Process, 8:85–
96.


