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ABSTRACT

Statistical methods have long been the dominant approach
in speech recognition and probabilistic modelling in ASR
is now a mature technology. The use of statistical meth-
ods in other areas of spoken dialogue is however more re-
cent and rather less mature. This paper reviews spoken dia-
logue systems from a statistical modelling perspective. The
complete system is first presented as a partially observable
Markov decision process. The various sub-components are
then exposed by introducing appropriate intermediate vari-
ables. Samples of existing work are reviewed within this
framework, including dialogue control and optimisation, se-
mantic interpretation, goal detection, natural language gen-
eration and synthesis.

1. INTRODUCTION

A statistical model of a spoken dialogue system is shown in
Fig. 1. The system operates cyclically. It begins with a de-
fault, system-initiated, dialogue act

���
which is converted

to an acoustic signal ��� inviting the user to speak. Based
on the user’s current beliefs, ��� , the user generates a sig-
nal �	� which is corrupted by noise before being input to a
speech understanding component as the acoustic signal 
 � .
The noisy speech signal 
 � is decoded to give a set of di-
alogue acts

� � . These dialogue acts are interpreted by the
domain model and used to transform the system state.

The precise definition of a dialogue act is not critical.
Here it suffices to define it as a frame of information repre-
senting an intention with an internal structure consisting of
slot/value pairs. The latter will be referred to here as seman-
tic concepts. As an example, an automated pizza ordering
system might say: “Pizza World - how may I help you?” and
the user might respond: “I would like two pepperoni pizzas,
please”. In this case,

� � would be the single dialogue act

Purchase Request � qty = 2; topping = pepperoni; �
and it would result in the system state  being updated to
record the request for two pepperoni pizzas. Since errors
can occur, the components of

� � may have various confi-
dence levels associated with them and these will be encoded
within the system state  .
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Fig. 1. Structure of a Spoken Dialogue System

The decoded
� � and the updated  are combined to

form an observation � from which the system’s beliefs � �
are updated. Based on these beliefs, the dialogue manager
generates a set of system generated dialogue acts, encoding
perhaps, a request to confirm the topping and give the size,
e.g. “What size pepperoni pizzas would you like?”. The
whole cycle then repeats.

This statistical model of an SDS is characterised by a
minimal dependence on explicit rules, and a heavy depen-
dence on learning from data. The overall dialogue can be
represented by a Partially Observable Markov Decision Pro-
cess (POMDP) for which the optimal dialogue management
policy can be learned from data. The speech understanding
component can be designed using the traditional pattern-
matching paradigm of estimating the posterior distribution��� � ��� 
�� and then decoding using a maximum a posteriori
(MAP) rule. The response generation can be implemented
by modelling

��� ����� ��� � and then sampling the distribu-
tion.

Although simplistic in certain aspects, the above frame-
work is capable of modelling most of the hand-crafted lim-
ited domain applications being deployed today in areas such
as information inquiry and e-commerce. The potential ad-
vantages of the statistical approach are greatly reduced de-
ployment costs and more robust operation. The drawback,
and a major inhibitor to progress, is the difficulty in obtain-
ing suitable training data. This latter issue is dependent on
the level of annotation required for training and one of the
key research issues is to find robust ways of learning struc-
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Fig. 2. MDP Representation of a Dialogue System

ture from unannotated and partially annotated data. The fol-
lowing sections explore these issues in more detail.

2. DIALOGUE MANAGEMENT AND CONTROL

As indicated in the preceding introduction, a spoken dia-
logue system can be regarded as a Markov Decision Process
and reinforcement learning used to find optimal dialogue
management policies. Early work in this area was pioneered
by Pieraccini and Levin [1, 2]. They modelled an SDS as a
fully observable MDP in which the user and the speech un-
derstanding component were combined to form a single sys-
tem represented by a transition function

��� ���� ���� �"! � �������
where  � is the system state and

� � is the action applied
to the system at time # (see Fig. 2). In an SDS,

� � is a set
of system dialogue acts

� �
determined by a policy function$ �  � � . The combination of action and state at time # de-

termines the expected immediate reward % �'&(�*) % �  � ! � � �
and the goal is to find the policy which maximises the total
reward +�, where +�� ).-	/ ���021 � % 0 &(� . The immediate re-
wards can be selected to meet any dialogue design criteria
but commonly a small negative reward is given at each dia-
logue turn. A larger positive reward is then given on com-
pleting successfully and a corresponding negative reward is
given for completing unsuccessfully. Thus, the system is
motivated to succeed and complete the dialogue as quickly
as possible.

This model fits the classic framework of reinforcement
learning (see [3] for a good introduction). All solution meth-
ods depend on finding the value function354�� 6� )87 4 �"+ � �  �9) :� (1)

For any state  , this function gives the expected value of
reward if the dialogue proceeds to the terminal state using
policy $ . Even more useful is the closely related function; 4 � 9! � � )87 4 �2+��<� �� ) 9! � � ) � �=� (2)

which gives the expected value of reward if action
�

is taken
from state  . If this

;
function is known, then the policy $?>

determined by$ > � @� )8ACBED�F�AHGI ; 4�� J! � � (3)

is guaranteed to be better or equal to $ . This provides a basis
for policy optimisation. If the system transition function
is known, then

;
can be found by dynamic programming

using an update rule of the form; � 9! � �6KL% � J! � �?MONQPSR ���  > � 9! � � F�AHGI R ; �  > ! � > � (4)

If the transition function is not known, then methods based
on sampling actual dialogues can be used. In particular,
temporal difference learning is a technique in which the;

function is updated after every dialogue turn
� 9! � �UT�  > ! � > � by comparing the actual one-step reward with the

reward predicted by the
;

function; � 9! � �6K ; � 9! � ��MWV:X % � 9! � �(M ; � J! � �JY ; �  > ! � > �[Z (5)

where V determines the learning rate. In order to ensure
that

;
is considered over all reasonable combinations of� J! � � , it is necessary to allow the dialogue to deviate from

the optimal policy occasionally. This is commonly done by
adopting a stochastic \ -soft policy. For each pair

� 9! � � , let�^] )8A�B_D�F`ACG I � ; � 9! � �<� then$ � 9! � � )badc Y�\9MW\feg� h � @��� if
� ) ��]\fei� h � @�j� otherwise

(6)

where h � @� is the set of all actions possible from state  .
This policy is designed to mostly follow the locally optimal
policy but to occasionally explore with probability \<eg� h � @�j�
a non-optimal action. As \kTml , then the soft policy hardens
to the optimal deterministic policy [4].

Comparing Fig. 2 with the dialog system shown in Fig. 1,
it can be seen that some extensions are needed in order to
handle a realistic dialogue within the MDP framework. In
particular, complete knowledge of the system state is unre-
alistic since firstly, the full system state  will typically be
intractably large and must therefore be approximated.1

Secondly, the user’s beliefs cannot be directly observed
and must therefore be inferred. Thus, in practice a dialogue
system must base its management strategy on incomplete
data. Fig. 1 shows how the framework of a Partially Ob-
servable Markov Decision Process (POMDP) allows this to
be done. The system’s beliefs � � are represented by a finite
(and computationally tractable) set of states which encode
the most pertinent information relevant to managing the di-
alogue. The observation vector � is derived from a com-
bination of the user’s most recent dialogue acts

� � and the
system state  , and it encapsulates the evidence needed to
update and maintain the system beliefs � � as accurately as
possible.

Unfortunately, policy optimisation for a POMDP is much
more complex than for an MDP. In a POMDP, a belief state

1Note that the system state n must encode all relevant history plus all
system variables. Even the most simplistic implementation of the example
pizza dialogue would require several thousand states.



is a distribution over the underlying state set and is therefore
a continuous variable. Value functions over belief states are
linear combinations of value functions over states3 4 � �*� ) NjPb� � @�<o 3 4 � @� (7)

Thus, each belief value function becomes a hyperplane in
belief space and choosing the optimal policy involves find-
ing, at each step, the hyperplane with the maximum value at
any belief point. Although beliefs are not discrete and can
therefore not be enumerated, it turns out that belief states
can be partitioned into regions which share the same opti-
mal policy. This leads to a number of algorithms for pol-
icy optimisation [5, 6]. Unfortunately, however, all current
exact algorithms are effectively computationally intractable
for all but very small state sets.

Thus, whilst the MDP framework appears to provide a
sound basis for modeling spoken dialogues statistically, in
practice, substantial compromises must be made in order
to apply it. If the state space is too large, all methods be-
come intractable. If the state space is pruned in the simple
MDP case, the system becames non-Markovian and it can
take no account of uncertain interpretation of the user’s be-
liefs. If the POMDP framework is used, user uncertainty
can be accounted for, but the supportable state space is even
smaller. In all cases, the difficulty of collecting sufficient
training data is acute, especially since changing the policy
or the state/space can require a complete new set of data.

Despite the difficulties, progress is being made. Walker
et al have modelled several real systems using simple MDPs,
made tractable by reducing the state space to focus on char-
acteristics of specific interest such as the prompt type and
the confirmation type [7, 8]. They use training data col-
lected from live use of the SDS running a random policy
designed to explore the state-action space. They were able
to obtain significant improvements in reward measure and
they were also able to improve ASR performance by dis-
covering more finely tuned strategies for interpreting confi-
dence measures.

One limitation of the approach taken by Walker et al is
that they were forced to fix the state-space in advance be-
fore collecting data. Scheffler and Young avoided this prob-
lem by adopting a two stage approach[9, 10]. Firstly, they
trained a user simulation model using data obtained with a
prototype dialogue system. Secondly, they performed pol-
icy optimisation using synthetic data generated by the user
model. Like Walker et al, they also used a cut-down state-
space, but following [11] they found that the use of elligibil-
ity traces can compensate somewhat for the non-Markovian
behaviour of the resulting system.

Roy et al have studied simple robot dialogues within
the POMDP framework. They used the ASR output di-
rectly as the observations and avoided the intractability of

finding exact solutions by using an approximation known
as Augmented MDPs[12]. This approximation essentially
ranks belief vectors based on the most likely state and the
entropy of the belief state. They found that using a POMDP
framework led to better behaviour when recognition errors
occurred. Zhang et al have also used POMDPs to provide
robustness against errors [13]. They studied a system with
40 states, 15 actions and 25 observations and compared per-
formance of a grid-based POMDP policy optimisation com-
pared to various augmented MDPs. They found that the
POMDP version consistently yielded better solutions sug-
gesting that finding more efficient POMDP-based frame-
works for SDS is a worthwhile way forward.

3. SPEECH UNDERSTANDING

Referring back to Fig. 1, the goal of the speech understand-
ing component is to convert each input speech waveform
 ) 
p� into a set of dialogue acts

� � ) �"qi�"!_qsr�!�o�ojot�
given the current beliefs about the dialogue state � � i.e. we
seek u� � ) ACBED�F�AHGI�v ��� � � � 
w!E� � �) ACBED�F�AHGI�v ��� 
O� � �x!E� � � ��� � ��� � � � (8)

To solve this it is convenient to identify the word sequencey
carried by 
��� 
O� � � !_� � � ) N{z ��� 
W! y � � � !E� � �| F�AHGz ��� 
}� y ! � � � ���~y � � � !_� � � (9)

Substituting equation 9 into 8 and making reasonable de-
pendence assumptions givesu� � ) ACBED F�AHGI v a F�AHGz � ��� 
}� y ����~y � � � � ��� � ��� y !_� � �j��� (10)

A suboptimal sequential solution to equation 10 can be
achieved by first solvinguy ) ACBEDCF�AHGz � ��� 
�� y � ����y � � � �<� (11)

and then solvingu� � ) A�B_D F�ACGI v � ��� � ��� uy !_� � � � (12)

Equation 10 emphasises the fact that the common practice
of factoring the speech understanding problem into a two
stage process is suboptimal and the use of a word lattice in
place of the single best string

uy
should be preferred. In
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both stages, the dependence on dialogue state � � is clearly
shown. This indicates that there are potential benefits from
making the recogniser’s language model dependent on the
dialogue context[14, 15] and that the dialogue state is cru-
cial for handling ambiguity and identifying underspecified
dialogue acts.

In order to evaluate equation 12, it is convenient to in-
troduce another intermediate representation��� � ��� uy !_� � � ) N_� ��� � �x� �^!_� � � ��� ��� uy !_� � � (13)

where � represents the set of semantic concepts encoded
within the word sequence

uy
. Decoding sequentially (and

again suboptimally) givesu� ) ACBEDCF�AHG� � ��� ��� uy !_� � �j� (14)

and u� � ) A�B_D�F`ACGI�v � ��� � � � u�*!E� � � � (15)

Equation 14 represents the process of semantic decoding
and equation 15 represents the process of combining the
system’s beliefs with the decoded semantics to find the most
likely dialogue acts. The combination of equations 11, 14
and 15 represent the complete decoding chain for speech
understanding and it is illustrated in Fig. 3.

The benefits of using a statistical approach for the word
recognition component are well-established and require no
further discussion here (see [16, 17] for recent reviews).
However, the statistical approach to semantic decoding and
dialogue act detection are less well-developed.

4. SEMANTIC DECODING

Semantic decoding in conventional limited domain SDS typ-
ically depend on a semantic template grammar and some
form of robust parser to extract the required semantic con-
cepts[18, 19, 20]. For example, an utterance such as “I
would like two pepperoni pizzas please” might yield the
parse shown in Fig. 4 where semantic rules such as “PIZZA� [QTY] [TOPPING] pizza[s]” have been used to represent
phrasal structure. These rules are domain specific and often
require many iterations of user-testing before they achieve
adequate coverage.

I would like two pepperoni

IWANT QTY TOPPING

PIZZA

S

pizzas

PLEASE

please

Fig. 4. Example Semantic Parse Tree

The statistical approach to semantic decoding attempts
to solve equation 14 directly without any explicit require-
ment to produce a parse tree. Thus, in the example, extrac-
tion of the semantic concepts qty=2; topping=pepperoni
is all that is required2. This suggests an approach in which
each word � in an utterance

y
is simply tagged with a sin-

gle discrete concept label � [21, 22]. In the example, “two”
would be tagged with QTY and “pepperoni” with TOPPING.
Irrelevant words are tagged with a dummy marker and sub-
sequently discarded.

Under this model of semantic decoding, equation 14 can
be rewritten as3u� ) ACBEDCF�AHG� � ��� uy � ��� ��� ��� � � � � (16)

| ACBEDCF�AHG� � /�� 1 � ��� �k��� �:��� �9ojo�o��k���x��&(�H!E�<������ �f��� �<��� �?o�ojo��<�����:&?�"!_� � �H� (17)

In equation 16,
��� ��� � � � is often referred to as the semantic

model and
��� uy � ��� is referred to as the lexical model. The

sequence of concepts �"�?o�ojo_� / is modelled as an m-gram
conditioned on the current system beliefs and the words are
modelled as an n-gram conditioned on the semantic con-
cepts �<� . If � )�� and � ) c , the result is a conventional
1st order Markov model with states labelled by semantic
concepts and transitions given by the concept bigram prob-
abilities.

As Levin and Pieraccini demonstrated in the 1994 ATIS
evaluations [23], this flat model of semantic decoding can
give surprisingly good results. However, the left-right struc-
ture does not allow any hierarchical grouping of the con-
cepts and this weakens the predictive power of the model

2Note however that in practice the sequential processing model shown
in Fig. 3 may require the set of semantic concepts to be extended beyond
simple domain action/entity arguments. For example, IWANT in Fig. 4
might be retained as a semantic concept in order to assist in the subsequent
decoding of the relevant dialogue act.

3In practice start and end sentence markers are used to enable prediction
of the first word and last word of the sentence. This detail is omitted here
for clarity.



since adjacent symbols are only weakly coupled. Further-
more, the expressive power is limited by its inability to rep-
resent nested structures.

The representational power of the flat concept model
can be extended by converting the simple finite state tran-
sition network underlying the HMM into a recursive tran-
sition network such that any concept-state can itself be a
finite state network[24]. This so-called Hidden Understand-
ing Model (HUM) extends the class of supported languages
from regular to context-free. To apply the HUM, a modified
version of the Earley parsing algorithm is used [25] which
generates the sequence of concepts �5�� ) �j�Ho�o � � or parse
path corresponding to a depth-first scan of the entire parse
tree. In this case, the probabilities of the semantic and lexi-
cal models are computed in an efficient interleaved manner
as��� ���� � ) ��� 1 � a ��� � � � � � ���"!E�j�C� if �j��� SemModel��� � � � � � ���C!_�j��� if �j��� LexModel

(18)

where �j� denotes the concept corresponding to the current
model along the parse path where both the semantic and
lexical models are context-dependent bigrams.

The key problem in building a model for semantic de-
coding is providing suitable training data since, in general,
large quantities of fully annotated tree-bank data will not be
available for every (or even most) applications. The ideal
semantic model will therefore have the following properties� powerful enough to capture the necessary semantic

structures� training data easily generated by the dialogue designer� cost of producing the training data less than the cost
of hand-crafting a semantic grammar

In some sense, the two models above represent opposite
ends of the spectrum. The flat model of Pieraccini and Levin
can be adapted to work with relatively simple training data
annotations (e.g. an unaligned list of semantic tags). How-
ever, the representational power of the flat model is not gen-
erally adequate. On the other hand, the hierarchical HUM
of Miller et al requires fully annotated tree-bank data. Any
attempt to use simpler annotations and let EM discover the
hidden structure are very unlikely to work since there are far
too many degrees of freedom in an unrestricted context free
model [26].

The way forward is therefore likely to be a compro-
mise. It seems reasonable that the training data should be
annotated with the corresponding dialogue acts (or equiv-
alent semantic schema) since this type of data is relatively
straightforward for the dialogue designer to produce and it
can legitimately be regarded as part of the application de-

I would like two pepperoni

IWANT TOPPING

QTY

S

pizzas

PLEASE

please

ITEM

Fig. 5. Right Branching Parse Tree

sign process4. The goal of the training algorithm is then to
learn to associate words and phrases with particular schema
elements.

Wang and Acero have recently demonstrated the viabil-
ity of this approach using a combination of grammar tem-
plates derived automatically from semantic schema and cons-
traint-based parsing [27, 28]. Their basic idea is to use the
schema to generate a set of high-level grammar rules. The
key informational items in the schema are augmented with
optional pre- and post- modifers. A robust parser then scans
the training data and associates phrases with the key infor-
mational items, associating words with the modifiers as a
side-effect. These modifier-word associations fill out the
grammar with the required lower level rules. Semantic de-
coding can also be viewed as an information extraction task.
In [29], Chelba and Mahajan describe how a structured lan-
guage model [30] intialised on general treebank data can be
trained for a specific SDS. Essentially this approach is simi-
lar to Wang and Acero in that a two level grammar is learnt.
The high level is derived from the semantic schema and then
used as constraints to parse the training data and learn the
lower slot level grammar rules.

An alternative to using automatically inferred grammar
templates to provide the needed constraints, is to restrict the
underlying formalism. For example, limiting a stochastic
grammar to be strictly right-branching leads to a model for
which EM-based parameter estimation is tractable[31]. The
parse tree for the example sentence is shown in Fig. 5. Note
that although the right-branching constraint forces some-
what unnatural dominence relationships, the essential phrase
structure can still be maintained. Unlike the general hi-
erarchical model, this probabilistic model is well-suited to
left-right decoding. Since each partial path covering �^�Co�o �k�
contains exactly the same number of probabilities, paths can
be compared directly without normalisation and pruning.
Compared to the general SCFG model, the effective state-
space and model size is much reduced.

Finally, note that since all of the above methods lead to

4Essentially this was the approach taken in ATIS where SQL queries
were provided for all training utterances
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Fig. 6. Dialogue Act Detection using a Bayesian Network

models which can assign overall probabilities to interpreta-
tions of a word sequence, their extension to process lattices
of alternative word sequences, as suggested in section 3, is
relatively straightforward.

5. DIALOGUE ACT DETECTION

The methods described in the previous section were focussed
on solving equation 14, this section briefly discusses the so-
lution of equation 15.

Assuming that there is a finite set h ) �2q � !�o{o�!EqS��� of
allowed dialogue acts and a finite set � ) �2� � !jo�o{!_�j��� of
semantic concepts, the problem is essentially that of deter-
mining a mapping from a subset �b �� to a subset

�  8h
As such, a variety of solutions are possible. If

�
is limited

to being a single dialogue act, then binary decision trees can
be used in which the leaf nodes correspond to dialogue acts
and each tree node ¡ is labelled with a subset � �  w� imply-
ing the question “Is any input concept ���¢� � ”. Such a tree
can easily be trained automatically from examples of actu-
ally occurring concept sets and the corresponding dialogue
acts.

An alternative which provides a soft-classification and
which allows detection of multiple dialogue acts uses Bayes-
ian Networks (BNs) [32, 33]. In the approach developed by
Meng and colleagues, one BN is defined for each possible
dialogue act as shown in Fig.6. The conditional probabil-
ities

��� ��£¤� q�¥2� and the priors
��� q�¥2� are learnt from train-

ing data. Given a set of input concepts (the evidence), then��� q�¥S� �j�"!jo�o{!_� � � is computed for each act q¦¥ , and the most
likely are selected as the decoded output. As shown by
the dotted line in Fig.6, concepts are not all conditionally
independent and performance can be improved by includ-
ing between concept dependencies. In [34], an automatic
method is proposed for learning the most significant depen-
dencies based on minimum description length. Once the ev-
idence has been entered into the network, the posterior con-
cept probabilities can be computed. A concept which has a
high posterior but which was not supplied in the evidence
is probably needed information, and should be asked for.
Similarly, a concept with low probability but which was in
the evidence might be spurious, and it should be confirmed

with the user. Thus, BNs used in this way can assist with
mixed initiative dialogue management. [35, 36].

Finally, in this context the work of Bellegarda and Sil-
verman should be mentioned[37]. They construct a matrixy ) �j� ¥E£ � which records the number of times that con-
cept � £ occurred in an utterance conveying dialogue act q ¥ .
They compute the SVD

y )¨§  3 / and then at run-time
they use § / to map input concept vectors into a much re-
duced subspace where a simple distance metric can be used
to identify likely dialogue acts. In fact they include words
rather than concepts in the input vectors and dispense with
semantic decoding altogether giving an effective and robust
technique for simple domains.

6. SPEECH GENERATION

Generation is essentially the inverse of the understanding
process described in section 3. Given the speech acts

� �
and the embedded concepts � � output by the dialogue man-
ager, an acoustic signal � � is required which conveys the
intended meaning to the user in the most natural possible
way, i.e. we seekA�B_D�F�ACG�8© ��� �8�¦� �^� !E� � � )

A�B_D�F�ACG��© � N z ��� ���¦� y � ����y � ��� !=� � �Hª (19)

Again decoding sequentially leads touy ) A�B_D¦F�AHGz � ����y � � � !=� � �=� (20)

and u�8� ) ACBED5F�AHG� © � ��� �8��� uy �j� (21)

Equation 20 suggests that the domain specific models used
in understanding (or a similar set trained on sample out-
puts rather than sample inputs) can be reused in “generation
mode” to produce the most likely word sequence. However,
the model

����y � ��� used for understanding was designed to
extract the key content words and ignore syntax. Thus, a
generation model based on this would lead to outputs with
unacceptable surface structure. The solution to this is to
smooth equation 20 with a separate language model trained
on a large amount of well-formed data. Since this model is
only required to capture surface structure, a simple N-gram
will suffice. Equation 20 then becomesuy ) ACBED�F�AHGz � ����y � � � !=� � ��M¬«®�`��y � � (22)

where « controls the weight placed on grammatical well-
formedness. In practice, the two stage process illustrated in
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Fig. 7 is used to implement equation 22. First
����y � � � !=� � �

is used to generate a lattice of possible word sequences.����y � is then used to select the most likely single sequence
from the lattice. Language generation based on this over-
generate and filter paradigm was first proposed by Langek-
ilde and Knight in a system called Nitrogen [38, 39]. They
used a hand-crafted semantic template grammar as the gen-
erator and a bigram language model for the filter. Atomic
concepts in the template grammar were expanded using a
lexicon and morphological expansion was performed by rule.
However, since the model is tolerant to over-generation, the
rules can be kept very simple.

The lack of an explicit tree-based representation of syn-
tax can work well in narrow domains, but wider coverage
benefits from more general syntactic knowledge. In [40], a
tree-based model is introduced based on the UPenn XTAG
grammar. This is claimed to allow richer output forms in-
cluding the ability to model long-range effects such as the
separation of parts of a collocation through embedded ad-
juncts.

None of the above systems pay much attention to sen-
tence planning. In [41], a sentence planner called SPoT
is described which operates on the overgenerate and filter
paradigm. In this case the generator takes as input primitive
dialogue acts, and stochastically combines these using a set
of built-in combination operators such as merge, conjoin,
relative-clause, etc. The filter is trained on a corpus of sen-
tences graded by human judges to rank the generator output
based on a number of features, the features themselves be-
ing determined automatically from the human-ranked data.
On evaluation, the plans selected by SPoT are found to be
statistically indistinguishable from the best plan selected by
human judges.

Turning finally to the generation of the acoustic signal,
speech synthesis systems implement equation 21 in essen-
tially the same way as above. They have a large database
of phone models and they attempt to find an expansion of
uy

which meets various acoustic constraints. Most systems
store the waveform segment corresponding to each phone
model directly in the database making synthesis a trivial
concatenation process [42]. Space precludes a detailed dis-

cussion of synthesis methods. However, within the theme
of this paper, the work of Tokuda is noteworthy in that he
has developed a system which uses HMMs directly as gen-
erators thus neatly implementing equation 21 directly [43].

7. CONCLUSIONS

This paper has attempted to provide a general statistical
framework for spoken dialogue systems and a variety of
on-going work has been described within that framework.
There are clearly many hard problems to solve before this
general holistic approach is ready for widespread deploy-
ment. However, the long-term pay-off is the ability to con-
struct systems which are trainable from data, cheap to build,
robust in operation and which can adapt their behaviour on-
line.
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