
Sphinx-4: A Flexible Open Source Framework
for Speech Recognition

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,
Rita Singh, Evandro Gouvea, Peter Wolf, Joe Woelfel



16 Network Circle
Menlo Park, CA 94025

Sphinx-4: A Flexible Open Source Framework
for Speech Recognition

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,
Rita Singh, Evandro Gouvea, Peter Wolf, and Joe Woelfel

SMLI TR-2004-139  November 2004

Abstract:

Sphinx-4 is a flexible, modular and pluggable framework to help foster new innovations
in the core research of hidden Markov model (HMM) speech recognition systems. The
design of Sphinx-4 is based on patterns that have emerged from the design of past
systems as well as new requirements based on areas that researchers currently want
to explore. To exercise this framework, and to provide researchers with a “research-
ready” system, Sphinx-4 also includes several implementations of both simple and
state-of-the-art techniques. The framework and the implementations are all freely
available via open source.

W. Walker, P. Lamere, and P. Kwok are with Sun Microsystems
E. Gouvea and R. Singh are with Carnegie Mellon University
B. Raj, P. Wolf, and J. Woelfel are with Mitsubishi Electric Research Labs

email addresses:
william.walker@sun.com
paul.lamere@sun.com
philip.kwok@sun.com
bhiksha@merl.com
rsingh@cs.cmu.edu
egouvea@cs.cmu.edu
wolf@merl.com
woelfel@merl.com



© 2004 Sun Microsystems, Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun
Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trade-
mark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@sun.com>.All technical
reports are available online on our website, http://research.sun.com/techrep/.



1

Sphinx-4: A Flexible Open Source Framework
for Speech Recognition

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh,
Evandro Gouvea, Peter Wolf, Joe Woelfel

I. INTRODUCTION

WHEN researchers approach the problem of core speech recognition research, they are
often faced with the problem of needing to develop an entire system from scratch, even

if they only want to explore one facet of the field. Open sourcespeech recognition systems are
available, such as HTK [1], ISIP [2], AVCSR [3] and earlier versions of the Sphinx systems [4]–
[6]. The available systems are typically optimized for a single approach to speech system design.
As a result, these systems intrinsically create barriers tofuture research that departs from the
original purpose of the system. In addition, some of these systems are encumbered by licensing
agreements that make entry into the research arena difficultfor non-academic institutions.

To facilitate new innovation in speech recognition research, we formed a distributed, cross-
discipline team to create Sphinx-4 [7]: an open source platform that incorporates state-of-the
art methodologies and also addresses the needs of emerging research areas. Given our technical
goals as well as our diversity (e.g., we used different operating systems on different machines,
etc.), we wrote Sphinx-4 in the JavaTMprogramming language, making it available to a large
variety of development platforms.

First and foremost, Sphinx-4 is a modular and pluggable framework that incorporates design
patterns from existing systems, with sufficient flexibilityto support emerging areas of research
interest. The framework is modular in that it comprises separable components dedicated to
specific tasks, and it is pluggable in that modules can be easily replaced at run time. To exercise
the framework, and to provide researchers with a working system, Sphinx-4 also includes a
variety of modules that implement state-of-the-art speechrecognition techniques.

The remainder of this document describes the Sphinx-4 framework and implementation, and
also includes a discussion of our experiences with Sphinx-4to date.

II. SELECTED HISTORICAL SPEECHRECOGNITION SYSTEMS

The traditional approach to speech recognition system design has been to create an entire
system optimized around a particular methodology. As evidenced by past research systems such
as Dragon [8], Harpy [9], Sphinx and others, this approach has proved to be quite valuable in
that the resulting systems have provided foundational methods for speech recognition research.

In the same light, however, each of these systems was largelydedicated to exploring a
single specific ground breaking area of speech recognition.For example, Baker introduced
hidden Markov models (HMMs) with his Dragon system, [8], [10] and earlier predecessors

W. Walker, P. Lamere, and P. Kwok are with Sun Microsystems
E. Gouvea and R. Singh are with Carnegie Mellon University
B. Raj, P, Wolf, and J. Woelfel are with Mitsubishi Electric Research Labs



2

Fig. 1. Sphinx-4 Decoder Framework. The main blocks are the FrontEnd, the Decoder, and the Linguist. Supporting blocks
include the ConfigurationManager and the Tools blocks. The communication between the blocks, as well as communication with
an application, is depicted.

of Sphinx explored variants of HMMs such as discrete HMMs [4], semicontinuous HMMs [5],
and continuous HMMs [11]. Other systems explored specialized search strategies such as using
lex tree searches for large N-Gram models [12].

Because they were focused on such fundamental core theories, the creators of these systems
tended to hardwire their implementations to a high degree. For example, the predecessor Sphinx
systems restrict the order of the HMMs to a constant value andalso fix the unit context to a single
left and right context. Sphinx-3 eliminated support for context free grammars (CFGs) due to the
specialization on large N-Gram models. Furthermore, the decoding strategy of these systems
tended to be deeply entangled with the rest of the system. As aresult of these constraints, the
systems were difficult to modify for experiments in other areas.

Design patterns for these systems emerged over time, however, as exemplified by Jelinek’s
source-channel model [13] and Huang’s basic system architecture [14]. In developing Sphinx-4,
one of our primary goals was to develop a framework that supported these design patterns, yet
also allowed for experimentation in emerging areas of research.

III. SPHINX-4 FRAMEWORK

The Sphinx-4 framework has been designed with a high degree of flexibility and modularity.
Figure 1 shows the overall architecture of the system. Each labeled element in Figure 1 represents
a module that can be easily replaced, allowing researchers to experiment with different module
implementations without needing to modify other portions of the system.

There are three primary modules in the Sphinx-4 framework: the FrontEnd, the Decoder,
and theLinguist. The FrontEnd takes one or more input signals and parameterizes them into a
sequence ofFeatures. The Linguist translates any type of standard language model, along with



3

Fig. 2. Sphinx-4 FrontEnd. The FrontEnd comprises one or more parallel chains of communicating DataProcessors.

pronunciation information from theDictionary and structural information from one or more sets
of AcousticModels, into a SearchGraph. The SearchManagerin the Decoder uses the Features
from the FrontEnd and the SearchGraph from the Linguist to perform the actual decoding,
generatingResults. At any time prior to or during the recognition process, the application can
issueControlsto each of the modules, effectively becoming a partner in therecognition process.

The Sphinx-4 system is like most speech recognition systemsin that it has a large number
of configurable parameters, such as search beam size, for tuning the system performance. The
Sphinx-4 ConfigurationManageris used to configure such parameters. Unlike other systems,
however, the ConfigurationManager also gives Sphinx-4 the ability to dynamically load and
configure modules at run time, yielding a flexible and pluggable system. For example, Sphinx-4
is typically configured with a FrontEnd (see Section IV) thatproduces Mel-Frequency Cepstral
Coefficients (MFCCs) [15]. Using the ConfigurationManager,however, it is possible to recon-
figure Sphinx-4 to construct a different FrontEnd that produces Perceptual Linear Prediction
coefficients (PLP) [16] without needing to modify any sourcecode or to recompile the system.

To give applications and developers the ability to track decoder statistics such as word error
rate [17], run time speed, and memory usage, Sphinx-4 provides a number ofTools. As with the
rest of the system, the Tools are highly configurable, allowing users to perform a wide range of
system analysis. Furthermore, the Tools also provide an interactive run time environment that
allows users to modify the parameters of the system while thesystem is running, allowing for
rapid experimentation with various parameters settings.

Sphinx-4 also provides support forUtilities that support application-level processing of recog-
nition results. For example, these utilities include support for obtaining result lattices, confidence
scores, and natural language understanding.

IV. FRONTEND

The purpose of the FrontEnd is to parameterize anInput signal (e.g., audio) into a sequence of
outputFeatures. As illustrated in Figure 2, the FrontEnd comprises one or more parallel chains
of replaceable communicating signal processing modules called DataProcessors. Supporting
multiple chains permits simultaneous computation of different types of parameters from the
same or different input signals. This enables the creation of systems that can simultaneously
decode using different parameter types, such as MFCC and PLP, and even parameter types
derived from non-speech signals such as video [3].

Like the ISIP [2] system, each DataProcessor in the FrontEndprovides an input and an output
that can be connected to another DataProcessor, permittingarbitrarily long sequences of chains.
The inputs and outputs of each DataProcessor are genericDataobjects that encapsulate processed
input data as well as markers that indicate data classification events such as end-point detection.
The last DataProcessor in each chain is responsible for producing a Data object composed of
parameterized signals, calledFeatures, to be used by the Decoder.



4

Like the AVCSR system [3], Sphinx-4 permits the ability to produce parallel sequences of
features. Sphinx-4 is unique, however, in that it allows foran arbitrary number of parallel streams.

The communication between blocks follows a pull design. With a pull design, a DataProcessor
requests input from an earlier module only when needed, as opposed to the more conventional
push design, where a module propagates its output to the succeeding module as soon as it is
generated. This pull design enables the processors to perform buffering, allowing consumers to
look forwards or backwards in time.

The ability to look forwards or backwards in time not only permits the Decoder to perform
frame-synchronous Viterbi searches [18], but also allows the decoder to perform other types of
searches such as depth-first and A* [19].

Within the generic FrontEnd framework, the Sphinx-4 provides a suite of DataProcessors
that implement common signal processing techniques. Theseimplementations include support
for the following: reading from a variety of input formats for batch mode operation, reading
from the system audio input device for live mode operation, preemphasis, windowing with
a raised cosine transform (e.g., Hamming and Hanning windows), discrete Fourier transform
(via FFT), mel frequency filtering, bark frequency warping,discrete cosine transform (DCT),
linear predictive encoding (LPC), end pointing, cepstral mean normalization (CMN), mel-cepstra
frequency coefficient extraction (MFCC), and perceptual linear prediction coefficient extraction
(PLP).

Using the ConfigurationManager described in Section III, users can chain the Sphinx-4 Dat-
aProcessors together in any manner as well as incorporate DataProcessor implementations of
their own design. As such, the modular and pluggable nature of Sphinx-4 not only applies to
the higher-level structure of Sphinx-4, but also applies tothe higher-level modules themselves
(i.e., the FrontEnd is a pluggable module, yet also consistsof pluggable modules itself).

V. L INGUIST

TheLinguistgenerates the SearchGraph that is used by the decoder duringthe search, while at
the same time hiding the complexities involved in generating this graph. As is the case throughout
Sphinx-4, the Linguist is a pluggable module, allowing people to dynamically configure the
system with different Linguist implementations.

A typical Linguist implementation constructs the SearchGraph using the language structure
as represented by a given LanguageModel and the topologicalstructure of the AcousticModel
(HMMs for the basic sound units used by the system). The Linguist may also use a Dictionary
(typically a pronunciation lexicon) to map words from the LanguageModel into sequences of
AcousticModel elements. When generating the SearchGraph,the Linguist may also incorporate
sub-word units with contexts of arbitrary length, if provided.

By allowing different implementations of the Linguist to beplugged in at run time, Sphinx-
4 permits individuals to provide different configurations for different system and recognition
requirements. For instance, a simple numerical digits recognition application might use a simple
Linguist that keeps the search space entirely in memory. On the other hand, a dictation application
with a 100K word vocabulary might use a sophisticated Linguist that keeps only a small portion
of the potential search space in memory at a time.

The Linguist itself consists of three pluggable components: the LanguageModel, the Dictio-
nary, and the AcousticModel, which are described in the following sections.



5

A. LanguageModel

The LanguageModel module of the Linguist provides word-level language structure, which can
be represented by any number of pluggable implementations.These implementations typically
fall into one of two categories: graph-driven grammars and stochastic N-Gram models. The
graph-driven grammar represents a directed word graph where each node represents a single
word and each arc represents the probability of a word transition taking place. The stochastic
N-Gram models provide probabilities for words given the observation of the previous n-1 words.

The Sphinx-4 LanguageModel implementations support a variety of formats, including the
following:

• SimpleWordListGrammar: defines a grammar based upon a list of words. An optional
parameter defines whether the grammar “loops” or not. If the grammar does not loop, then
the grammar will be used for isolated word recognition. If the grammar loops, then it will
be used to support trivial connected word recognition that is the equivalent of a unigram
grammar with equal probabilities.

• JSGFGrammar: supports the JavaTMSpeech API Grammar Format (JSGF) [20], which
defines a BNF-style, platform-independent, and vendor-independent Unicode representation
of grammars.

• LMGrammar: defines a grammar based upon a statistical language model. LMGrammar
generates one grammar node per word and works well with smaller unigram and bigram
grammars of up to approximately 1000 words.

• FSTGrammar: supports a finite-state transducer (FST) [21] in the ARPA FST grammar
format.

• SimpleNGramModel: provides support for ASCII N-Gram models in the ARPA format.
The SimpleNGramModel makes no attempt to optimize memory usage, so it works best
with small language models.

• LargeTrigramModel: provides support for true N-Gram models generated by the CMU-
Cambridge Statistical Language Modeling Toolkit [22]. TheLargeTrigramModel optimizes
memory storage, allowing it to work with very large files of 100MB or more.

B. Dictionary

The Dictionary provides pronunciations for words found in the LanguageModel. The pro-
nunciations break words into sequences of sub-word units found in the AcousticModel. The
Dictionary interface also supports the classification of words and allows for a single word to be
in multiple classes.

Sphinx-4 currently provides implementations of the Dictionary interface to support the CMU
Pronouncing Dictionary [23]. The various implementationsoptimize for usage patterns based on
the size of the active vocabulary. For example, one implementation will load the entire vocabulary
at system initialization time, whereas another implementation will only obtain pronunciations on
demand.

C. AcousticModel

The AcousticModelmodule provides a mapping between a unit of speech and an HMM that
can be scored against incoming features provided by the FrontEnd. As with other systems, the
mapping may also take contextual and word position information into account. For example, in
the case of triphones, the context represents the single phonemes to the left and right of the given



6

phoneme, and the word position represents whether the triphone is at the beginning, middle, or
end of a word (or is a word itself). The contextual definition is not fixed by Sphinx-4, allowing
for the definition of AcousticModels that contain allophones as well as AcousticModels whose
contexts do not need to be adjacent to the unit.

Typically, the Linguist breaks each word in the active vocabulary into a sequence of context-
dependent sub-word units. The Linguist then passes the units and their contexts to the Acoustic-
Model, retrieving the HMM graphs associated with those units. It then uses these HMM graphs
in conjunction with the LanguageModel to construct the SearchGraph.

Unlike most speech recognition systems, which represent the HMM graphs as a fixed structure
in memory, the Sphinx-4 HMM is merely a directed graph of objects. In this graph, each node
corresponds to an HMM state and each arc represents the probability of transitioning from one
state to another in the HMM. By representing the HMM as a directed graph of objects instead
of a fixed structure, an implementation of the AcousticModelcan easily supply HMMs with
different topologies. For example, the AcousticModel interfaces do not restrict the HMMs in
terms of the number of states, the number or transitions out of any state, or the direction of
a transition (forward or backward). Furthermore, Sphinx-4allows the number of states in an
HMM to vary from one unit to another in the same AcousticModel.

Each HMM state is capable of producing a score from an observed feature. The actual code
for computing the score is done by the HMM state itself, thus hiding its implementation from
the rest of the system, even permitting differing probability density functions to be used per
HMM state. The AcousticModel also allows sharing of variouscomponents at all levels. That
is, the components that make up a particular HMM state such asGaussian mixtures, transition
matrices, and mixture weights can be shared by any of the HMM states to a very fine degree.

As with the rest of Sphinx-4, individuals can configure Sphinx-4 with different implemen-
tations of the AcousticModel based upon their needs. Sphinx-4 currently provides a single
AcousticModel implementation that is capable of loading and using acoustic models generated
by the Sphinx-3 trainer.

D. SearchGraph

Even though Linguists may be implemented in very different ways and the topologies of the
search spaces generated by these Linguists can vary greatly, the search spaces are all represented
as a SearchGraph. Illustrated by example in Figure 3, the SearchGraph is the primary data
structure used during the decoding process.

The graph is a directed graph in which each node, called aSearchState, represents either an
emittingor anon-emittingstate. Emitting states can be scored against incoming acoustic features
while non-emitting states are generally used to represent higher-level linguistic constructs such as
words and phonemes that are not directly scored against the incoming features. The arcs between
states represent the possible state transitions, each of which has a probability representing the
likelihood of transitioning along the arc.

The SearchGraph interface is purposely generic to allow fora wide range of implementation
choices, relieving the assumptions and hard-wired constraints found in previous recognition
systems. In particular, the Linguist places no inherent restrictions on the following:

• Overall search space topology
• Phonetic context size
• Type of grammar (stochastic or rule based)
• N-Gram language model depth



7

Fig. 3. Example SearchGraph. The SearchGraph is a directed graph composed of optionally emitting SearchStates and
SearchStateArcs with transition probabilities. Each state in the graph can represent components from the LanguageModel (words
in rectangles), Dictionary (sub-word units in dark circles) or AcousticModel (HMMs).

A key feature of the SearchGraph is that the implementation of the SearchState need not be
fixed. As such, each Linguist implementation typically provides its own concrete implementation
of the SearchState that can vary based upon the characteristics of the particular Linguist. For
instance, a simple Linguist may provide an in-memory SearchGraph where each SearchState is
simply a one-to-one mapping onto the nodes of the in-memory graph. A Linguist representing
a very large and complex vocabulary, however, may build a compact internal representation of
the SearchGraph. In this case, the Linguist would generate the set of successor SearchStates by
dynamically expanding this compact representation on demand.

The manner in which the SearchGraph is constructed affects the memory footprint, speed,
and recognition accuracy. The modularized design of Sphinx-4, however, allows different Search-
Graph compilation strategies to be used without changing other aspects of the system. The choice
between static and dynamic construction of language HMMs depends mainly on the vocabulary
size, language model complexity and desired memory footprint of the system, and can be made
by the application.

E. Implementations

As with the FrontEnd, Sphinx-4 provides several implementations of the Linguist to support
different tasks.

The FlatLinguist is appropriate for recognition tasks that use context-freegrammars
(CFG), finite-state grammars (FSG), finite-state transducers (FST) and small N-Gram language
models. The FlatLinguist converts any of these external language model formats into an internal
Grammar structure. The Grammar represents a directed word graph where eachGrammarNode
represents a single word, and each arc in the graph represents the probability of a word transition
taking place. The FlatLinguist generates the SearchGraph directly from this internal Grammar
graph, storing the entire SearchGraph in memory. As such, the FlatLinguist is very fast, yet has
difficulty handling grammars with high branching factors.

The DynamicFlatLinguist is similar to the FlatLinguist in that is is appropriate for
similar recognition tasks. The main difference is that the DynamicFlatLinguist dynamically
creates the SearchGraph on demand, giving it the capabilityto handle far more perplex grammars.
With this capability, however, comes a cost of a modest decrease in run time performance.

TheLexTreeLinguist is appropriate for large vocabulary recognition tasks thatuse large
N-Gram language models. The order of the N-Grams is arbitrary, and the LexTreeLinguist will



8

support true N-Gram decoding. The LexTreeLinguist organizes the words in a lex tree [6], a
compact method of representing large vocabularies. The LexTreeLinguist uses this lex tree to
dynamically generate SearchStates, enabling it to handle very large vocabularies using only a
modest amount of memory. The LexTreeLinguist supports ASCII and binary language models
generated by the CMU-Cambridge Statistical Language Modeling Toolkit [22].

VI. DECODER

The primary role of the Sphinx-4Decoder block is to use Features from the FrontEnd
in conjunction with the SearchGraph from the Linguist to generate Result hypotheses. The
Decoder block comprises a pluggableSearchManagerand other supporting code that simplifies
the decoding process for an application. As such, the most interesting component of the Decoder
block is the SearchManager.

The Decoder merely tells the SearchManager to recognize a set of Feature frames. At each step
of the process, the SearchManager creates aResultobject that contains all the paths that have
reached a final non-emitting state. To process the result, Sphinx-4 also provides utilities capable
of producing a lattice and confidence scores from the Result.Unlike other systems, however,
applications can modify the search space and the Result object in between steps, permitting the
application to become a partner in the recognition process.

Like the Linguist, the SearchManager is not restricted to any particular implementation. For
example, implementations of the SearchManager may performsearch algorithms such as frame-
synchronous Viterbi, A*, bi-directional, and so on.

Each SearchManager implementation uses a token passing algorithm as described by Young
[24]. A Sphinx-4 token is an object that is associated with a SearchState and contains the
overall acoustic and language scores of the path at a given point, a reference to the SearchState,
a reference to an input Feature frame, and other relevant information. The SearchState reference
allows the SearchManager to relate a token to its state output distribution, context-dependent
phonetic unit, pronunciation, word, and grammar state. Every partial hypothesis terminates in
an active token.

As illustrated in Figure 1, implementations of a SearchManager may construct a set of active
tokens in the form of anActiveList at each time step, though the use of anActiveList is not
required. As it is a common technique, however, Sphinx-4 provides a sub-framework to support
SearchManagers composed of anActiveList, a Pruner and aScorer.

The SearchManager sub-framework generates ActiveLists from currently active tokens in the
search trellis by pruning using a pluggablePruner. Applications can configure the Sphinx-
4 implementations of the Pruner to perform both relative andabsolute beam pruning. The
implementation of the Pruner is greatly simplifed by the garbage collector of the Java platform.
With garbage collection, the Pruner can prune a complete path by merely removing the terminal
token of the path from the ActiveList. The act of removing theterminal token identifies the
token and any unshared tokens for that path as unused, allowing the garbage collector to reclaim
the associated memory.

The SearchManager sub-framework also communicates with the Scorer, a pluggable state
probability estimation module that provides state output density values on demand. When the
SearchManager requests a score for a given state at a given time, the Scorer accesses the feature
vector for that time and performs the mathematical operations to compute the score. In the case
of parallel decoding using parallel acoustic models, the Scorer matches the acoustic model set
to be used against the feature type.



9

The Scorer retains all information pertaining to the state output densities. Thus, the Search-
Manager need not know whether the scoring is done with continuous, semi-continuous or discrete
HMMs. Furthermore, the probability density function of each HMM state is isolated in the same
fashion. Any heuristic algorithms incorporated into the scoring procedure for speeding it up can
also be performed locally within the scorer. In addition, the scorer can take advantage of multiple
CPUs if they are available.

The current Sphinx-4 implementation provides pluggable implementations of SearchManagers
that support frame synchronous Viterbi [18], Bushderby [25], and parallel decoding [26]:

• SimpleBreadthFirstSearchManager: performs a simple frame synchronous Viterbi
search with pluggable Pruner that is called on each frame. The default Pruner manages both
absolute and relative beams. This search manager produces Results that contains pointers
to active paths at the last frame processed.

• WordPruningBreadthSearchManager: performs a frame synchronous Viterbi search
with a pluggable Pruner that is called on each frame. Insteadof managing a single ActiveList,
it manages aset of ActiveLists, one for each of the state types defined by the Linguist.
Pruning is performed in the decomposition and sequence order of the state types as defined
by the Linguist.

• BushderbySearchManager: performs a generalized frame-synchronous breadth-first
search using the Bushderby algorithm, performing classifications based on free energy as
opposed to likelihoods.

• ParallelSearchManager: performs a frame synchronous Viterbi search on multiple
feature streams using a factored language HMM approach as opposed to the coupled HMM
approach used by AVCSR [3]. An advantage of the factored search is that it can be much
faster and far more compact than a full search over a compoundHMM.

VII. D ISCUSSION

The modular framework of Sphinx-4 has permitted us to do somethings very easily that
have been traditionally difficult. For example, both the parallel and Bushderby SearchManager
implementations were created in a relatively short period of time and did not require modification
to the other components of the system.

The modular nature of Sphinx-4 also provides it with the ability to use modules whose
implementations range from general to specific applications of an algorithm. For example, we
were able to improve the run time speed for the RM1 [27] regression test by almost 2 orders of
magnitude merely by plugging in a new Linguist and leaving the rest of the system the same.

Furthermore, the modularity of Sphinx-4 also allows it to support a wide variety of tasks.
For example, the various SearchManager implementations allow Sphinx-4 to efficiently support
tasks that range from small vocabulary tasks such as TI461 [28] and TIDIGITS2 [29] to large
vocabulary tasks such as HUB-4 [30]. As another example, thevarious Linguist implementations
allow Sphinx-4 to support different tasks such as traditional CFG-based command-and-control
applications in addition to applications that use stochastic language models.

The modular nature of Sphinx-4 was enabled primarily by the use of the Java programming
language. In particular, the ability of the Java platform toload code at run time permits simple

1TI46 refers to the NIST CD-ROM Version of the Texas Instruments-developed 46-Word Speaker-Dependent Isolated Word
Speech Database.

2TIDIGITS refers to the NIST CD-ROM Version of the Texas Instruments-developed Studio Quality Speaker-Independent
Connected-Digit Corpus.



10

Test WER RT
Sphinx-3.3 Sphinx-4 Sphinx-3.3 Sphinx-4 (1 CPU) Sphinx-4 (2 CPU)

TI46 (11 words) 1.217 0.168 0.14 0.03 0.02
TIDIGITS (11 words) 0.661 0.549 0.16 0.07 0.05
AN4 (79 words) 1.300 1.192 0.38 0.25 0.20
RM1 (1000 words) 2.746 2.739 0.50 0.50 0.40
WSJ5K (5000 words) 7.323 7.174 1.36 1.22 0.96
HUB-4 (64000 words) 18.845 18.878 3.06 4.40 3.80

TABLE I

SPHINX-4 PERFORMANCE. WORD ERRORRATE (WER) IS GIVEN IN PERCENT. REAL TIME (RT) SPEED IS THE RATIO OF

UTTERANCE DURATION TO THE TIME TO DECODE THE UTTERANCE. FOR BOTH, A LOWER VALUE INDICATES BETTER

PERFORMANCE. DATA GATHERED ON A DUAL CPU 1015MHZ ULTRASPARCR©III WITH 2G RAM

support for the pluggable framework, and the Java programming language construct of interfaces
permits separation of the framework design from the implementation.

The Java platform also provides Sphinx-4 with a number of other advantages:
• Sphinx-4 can run on a variety of platforms without the need for recompilation
• The rich set of platform APIs greatly reduces coding time
• Built-in support for multithreading makes it simple to experiment with distributing decoding

tasks across multiple threads
• Automatic garbage collection helps developers to concentrate on algorithm development

instead of memory leaks
On the downside, the Java platform can have issues with memory footprint. Also related to

memory, some speech engines will directly access the platform memory directly in order to
optimize the memory throughput during decoding. Direct access to the platform memory model
is not permitted with the Java programming language.

A common misconception people have regarding the Java programming language is that it is
too slow. When developing Sphinx-4, we carefully instrumented the code to measure various
aspects of the system, comparing the results to its predecessor, Sphinx-3.3. As part of this
comparison, we tuned Sphinx-3.3 to get its optimal performance for both real-time speed (RT)
and word error rate (WER). We then tuned Sphinx-4 to match or better the WER of Sphinx-4,
comparing the resulting RT speeds. Table I provides a summary of this comparison, showing that
Sphinx-4 performs well in comparison to Sphinx-3.3 (for both WER and RT, a lower number
indicates better performance).

An interesting result of this comparison helps to demonstrate the strength of the pluggable and
modular design of Sphinx-4. Sphinx-3.3 has been designed for more complex N-Gram language
model tasks with larger vocabularies. As a result, Sphinx-3.3 does not perform well for “easier”
tasks such as TI46 and TIDIGITS. Because Sphinx-4 is a pluggable and modular framework,
we were able to plug in different implementations of the Linguist and SearchManager that were
optimized for the particular tasks, allowing Sphinx-4 to perform much better. For example, note
the dramatic difference in WER and RT performance numbers for the TI46 task.

Another interesting aspect of the performance study shows us that raw computing speed is
not our biggest concern when it comes to RT performance. For the 2 CPU results in this table,
we used a Scorer that equally divided the scoring task acrossthe available CPUs. While the
increase in speed is noticeable, it is not as dramatic as we expected. Further analysis helped
us determine that only about 30 percent of the CPU time is spent doing the actual scoring of



11

the acoustic model states. The remaining 70 percent is spentdoing non-scoring activity, such
as growing and pruning the ActiveList. Our empirical results also show that the Java platform’s
garbage collection mechanism only accounts for 2-3 percentof the overall CPU usage.

VIII. F UTURE WORK

Sphinx-4 currently provides just one implementation of theAcousticModel, which loads
Sphinx-3.3 models created by the SphinxTrain acoustic model trainer. The SphinxTrain trainer
produces HMMs with a fixed number of states, fixed topology, and fixed unit contexts. Further-
more, the parameter tying [5] between the SphinxTrain HMMs and their associated probability
density functions is very coarse. Because the Sphinx-4 framework does not have these restrictions,
it is capable of handling HMMs with an arbitrary topology over an arbitrary number of states
and variable length left and right unit contexts. In addition, the Sphinx-4 acoustic model design
allows for very fine parameter tying. We predict that taking advantage of these capabilities will
greatly increase both the speed and accuracy of the decoder.

We have created a design for a Sphinx-4 acoustic model trainer that can produce acoustic
models with these desirable characteristics [31]. As with the Sphinx-4 framework, the Sphinx-4
acoustic model trainer has been designed to be a modular, pluggable system. Such an undertaking,
however, represents a significant effort. As an interim step, another area for experimentation is
to create FrontEnd and AcousticModel implementations thatsupport the models generated by
the HTK system [1].

We have also considered the architectural changes that would be needed to support segment-
based recognition frameworks such as the MIT SUMMIT speech recognizer [32]. A cursory
analysis indicates the modifications to the Sphinx-4 architecture would be minimal, and would
provide a platform to do meaningful comparisons between segmental and fixed-frame-size sys-
tems.

Finally, the SearchManager provides fertile ground for implementing a variety of search
approaches, including A*, fast-match, bi-directional, and multiple pass algorithms.

IX. CONCLUSION

After careful development of the Sphinx-4 framework, we created a number of differing
implementations for each module in the framework. For example, the FrontEnd implementations
support MFCC, PLP, and LPC feature extraction; the Linguistimplementations support a variety
of language models, including CFGs, FSTs, and N-Grams; and the Decoder supports a variety of
SearchManager implementations, including traditional Viterbi, Bushderby, and parallel searches.
Using the ConfigurationManager, the various implementations of the modules can be combined
in various ways, supporting our claim that we have developeda flexible pluggable framework.
Furthermore, the framework is performing well both in speedand accuracy when compared to
its predecessors.

The Sphinx-4 framework is already proving itself as being “research ready,” easily supporting
various work such as the parallel and Bushderby SearchManagers as well as a specialized Linguist
that can apply “unigram smear” probabilities to lex trees. We view this as only the very beginning,
however, and expect Sphinx-4 to support future areas of corespeech recognition research.

Finally, the source code to Sphinx-4 is freely available under a BSD-style license. The license
permits others to do academic and commercial research and todevelop products without requiring
any licensing fees. More information is available athttp://cmusphinx.sourceforge.
net/sphinx4.



12

ACKNOWLEDGMENTS

The authors would like to thank Prof. Richard Stern at CMU, Robert Sproull at Sun Mi-
crosystems Laboratories, and Joe Marks at MERL for making this team possible. We also
thank Sun Microsystems Laboratories and the current management for their continued support
and collaborative research funds. Rita Singh was sponsoredby the Space and Naval Warfare
Systems Center, San Diego, under Grant No. N66001-99-1-8905. The content of this paper
does not necessarily reflect the position or the policy of theU.S. Government, and no official
endorsement should be inferred.

REFERENCES

[1] S. Young, “The HTK hidden Markov model toolkit: Design and philosophy,” Cambridge University Engineering
Department, UK, Tech. Rep. CUED/F-INFENG/TR152, Sept. 1994.

[2] N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone, and M. Ordowski, “A public domain speech-to-text system,” in
Proceedings of the 6th European Conference on Speech Communication and Technology, vol. 5, Budapest, Hungary, Sept.
1999, pp. 2127–2130.

[3] X. X. Li, Y. Zhao, X. Pi, L. H. Liang, and A. V. Nefian, “Audio-visual continuous speech recognition using a coupled
hidden Markov model,” inProceedings of the 7th International Conference on Spoken Language Processing, Denver, CO,
Sept. 2002, pp. 213–216.

[4] K. F. Lee, H. W. Hon, and R. Reddy, “An overview of the SPHINX speech recognition system,”IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 38, no. 1, pp. 35–45, Jan. 1990.

[5] X. Huang, F. Alleva, H. W. Hon, M. Y. Hwang, and R. Rosenfeld, “The SPHINX-II speech recognition system: an
overview,” Computer Speech and Language, vol. 7, no. 2, pp. 137–148, 1993.

[6] M. K. Ravishankar, “Efficient algorithms for speech recognition,” PhD Thesis (CMU Technical Report CS-96-143),
Carnegie Mellon University, Pittsburgh, PA, 1996.

[7] P. Lamere, P. Kwok, W. Walker, E. Gouvea, R. Singh, B. Raj,and P. Wolf, “Design of the CMU Sphinx-4 decoder,” in
Proceedings of the 8th European Conference on Speech Communication and Technology, Geneve, Switzerland, Sept. 2003,
pp. 1181–1184.

[8] J. K. Baker, “The Dragon system - an overview,” inIEEE Transactions on Acoustic, Speech and Signal Processing, vol. 23,
no. 1, Feb. 1975, pp. 24–29.

[9] B. T. Lowerre, “The Harpy speech recognition system,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA,
1976.

[10] J. K. Baker, “Stochastic modeling for automatic speechunderstanding,” inSpeech Recognition, R. Reddy, Ed. New York:
Academic Press, 1975, pp. 521–542.

[11] P. Placeway, S. Chen, M. Eskenazi, U. Jain, V. Parikh, B.Raj, M. Ravishankar, R. Rosenfeld, K. Seymore, M. Siegler,
R. Stern, and E. Thayer, “The 1996 HUB-4 Sphinx-3 system,” inProceedings of the DARPA Speech Recognition Workshop.
Chantilly, VA: DARPA, Feb. 1997. [Online]. Available: http://www.nist.gov/speech/publications/darpa97/pdf/placewa1.pdf

[12] M. Ravishankar, “Some results on search complexity vs accuracy,” in Proceedings of the DARPA Speech Recognition
Workshop. Chantilly, VA: DARPA, Feb. 1997. [Online]. Available: http://www.nist.gov/speech/publications/darpa97/pdf/
ravisha1.pdf

[13] F. Jelinek,Statistical Methods for Speech Recognition. Cambridge, MA: MIT Press, 1998.
[14] X. Huang, A. Acero, F. Alleva, M. Hwang, L. Jiang, and M. Mahajan, “From SPHINX-II to Whisper: Making speech

recognition usable,” inAutomatic Speech and Speaker Recognition, Advanced Topics, C. Lee, F. Soong, and K. Paliwal,
Eds. Norwell, MA: Kluwer Academic Publishers, 1996.

[15] S. B. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllable word recognition in
continuously spoken sentences,” inIEEE Transactions on Acoustic, Speech and Signal Processing, vol. 28, no. 4, Aug.
1980.

[16] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,”Journal of the Acoustical Society of America,
vol. 87, no. 4, pp. 1738–1752, 1990.

[17] NIST. Speech recognition scoring package (score). [Online]. Available: http://www.nist.gov/speech/tools
[18] G. D. Forney, “The Viterbi algorithm,”Proceedings of The IEEE, vol. 61, no. 3, pp. 268–278, 1973.
[19] P. Kenny, R. Hollan, V. Gupta, M. Lenning, P. Mermelstein, and D. O’Shaugnessy, “A*-admissible heuristics of rapid

lexical access,”IEEE Transactions on Speech and Audio Processing, vol. 1, no. 1, pp. 49–59, Jan. 1993.
[20] “Java speech API grammar format (JSGF).” [Online]. Available: http://java.sun.com/products/java-media/speech/

forDevelopers/JSGF/
[21] M. Mohri, “Finite-state transducers in language and speech processing,”Computational Linguistics, vol. 23, no. 2, pp.

269–311, 1997.



13

[22] P. Clarkson and R. Rosenfeld, “Statistical language modeling using the CMU-cambridge toolkit,” inProceedings of the
5th European Conference on Speech Communication and Technology, Rhodes, Greece, Sept. 1997.

[23] Carnegie Mellon University. CMU pronouncing dictionary. [Online]. Available: http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

[24] S. J. Young, N. H. Russell, and J. H. S. Russell, “Token passing: A simple conceptual model for connected speech
recognition systems,” Cambridge University Engineering Dept, UK, Tech. Rep. CUED/F-INFENG/TR38, 1989.

[25] R. Singh, M. Warmuth, B. Raj, and P. Lamere, “Classification with free energy at raised temperatures,” inProceedings of
the 8th European Conference on Speech Communication and Technology, Geneve, Switzerland, Sept. 2003, pp. 1773–1776.

[26] P. Kwok, “A technique for the integration of multiple parallel feature streams in the Sphinx-4 speech recognition system,”
Master’s Thesis (Sun Labs TR-2003-0341), Harvard University, Cambridge, MA, June 2003.

[27] P. Price, W. M. Fisher, J. Bernstein, and D. S. Pallett, “The DARPA 1000-word resource management database for
continuous speech recognition,” inProceedings of the International Conference on Acoustics,Speech and Signal Processing,
vol. 1. IEEE, 1988, pp. 651–654.

[28] G. R. Doddington and T. B. Schalk, “Speech recognition:Turning theory to practice,”IEEE Spectrum, vol. 18, no. 9, pp.
26–32, Sept. 1981.

[29] R. G. Leonard and G. R. Doddington, “A database for speaker-independent digit recognition,” inProceedings of the
International Conference on Acoustics, Speech and Signal Processing, vol. 3. IEEE, 1984, p. 42.11.

[30] J. Garofolo, E. Voorhees, C. Auzanne, V. Stanford, and B. Lund, “Design and preparation of the 1996 HUB-4 broadcast
news benchmark test corpora,” inProceedings of the DARPA Speech Recognition Workshop. Chantilly, Virginia: Morgan
Kaufmann, Feb. 1997, pp. 15–21.

[31] E. Gouvea, B. Raj, R. Singh, and P. Moreno. (2003, Mar.) Sphinx-4 trainer design. [Online]. Available:
http://www.speech.cs.cmu.edu/cgi-bin/cmusphinx/twiki/view/Sphinx4/Train%erDesign

[32] J. R. Glass, “A probablistic framework for segment-based speech recognition,”Computer Speech and Language, vol. 17,
no. 2, pp. 137–152, Apr. 2003.



14

About the Authors

Willie Walker is the lead of the Speech Integration Group in Sun Labs where he created and
led the FreeTTS and Sphinx-4 open source projects. Willie also participated in the creation of
the VoiceXML and Java Speech API standards for speech. In addition to working on speech
technology, Willie created and led the design of the SPOC architecture for the Meeting Central
project in the Labs and also participated in a variety of other Labs projects. Prior to joining Sun
Labs, Willie spent nearly a decade working on enabling technologies for people with disabilities.
Willie holds a Bachelor’s in Computer Science from VirginiaTech.

Paul Lamere is a member of the Speech Integration Group in Sun Labs where he worked
on Sphinx-4 as well as FreeTTS. Paul has also contributed to anumber of speech standards
including VoiceXML and the Java Speech API. Paul holds a degree in Computer Science from
Boston University and a degree in Chemistry from St. Anselm College.

Philip Kwok is a member of the Speech Integration Group at Sun Labs and participated in
the creation of Sphinx-4 as well as FreeTTS. Prior to that, Philip was part of the Sun Labs
Awarenex project, building the speech and telephony components. Before joining Sun, Philip
was involved with the SSFNet research project doing simulation of computer networks and IP
routing. He holds a Bachelor’s degree from Hampshire College and a Master’s degree from
Harvard University.

Dr. Bhiksha Raj joined Mitsubishi Electric Research Labs (MERL) as a Staff Scientist. He
completed his PhD from Carnegie Mellon University (CMU) in May 2000. Dr. Raj works mainly
on algorithmic aspects of speech recognition, with specialemphasis on improving the robustness
of speech recognition systems to environmental noise. His latest work is on the use of statistical
information about speech for the automatic design of filter-and-sum microphone arrays. Dr. Raj
has over fifty conference and journal publications and is currently in the process of publishing
a book on missing-feature methods for noise-robust speech recognition.

Dr. Rita Singh is a past member of the research faculty in the School of Computer Science
at Carnegie Mellon University (CMU), and a visiting scientist at both the Media Labs and the
Laboratory of Computer Science at the Massachusetts Institute of Technology (MIT). Dr. Singh
is an expert on the design and development of algorithms for automatic speech recognition,
and in particular on noise robust speech recognition. She led the effort on advancing the CMU
Sphinx speech recognition for several years, and was in charge of all of CMU’s submissions to
various DAPRA and NRL organized evaluations of speech recognition system, including the first
and second Speech in noisy environment (SPINE) evaluationswhich CMU won handily. In her
spare time Dr. Singh has started a new journal and organized aone-of-a-kind web-based course
on speech recognition with international enrollment. Dr. Singh is also an expert on non-linear
dynamical systems and holds a PhD in Geophysics from the National Institute of Geophysical
Research Insitute, one of the premier CSIR research labs in India. Dr. Singh is currently the
founder and president of Haikya Corporation, a start-up speech recognition company.

Dr. Evandro Gouvea is a research associate in the Electrical and Computer Engineering
Department at Carnegie Mellon University (CMU). He is also affiliated with the Sphinx Speech
Group and the Project Listen in the School of Computer Science. Prior to joining CMU as a staff
member, he worked at Vocollect, Inc., where he was the main technical lead in the development
of their state of the art speech recognition system. Evandroreceived his PhD from CMU in



15

1999.

Peter Wolf is an expert in Speech Technologies and a broad range of Software Engineering
tools and practices. While Peter’s role at Mitsubishi Electric is often that of a technical expert
and principal engineer, his main interest is the definition and creation of new products and
services made possible by new technologies. Peter is currently exploring the use of speech
recognition to retrieve information with applications forcellphones, PDAs, automobiles and
home entertainment.

Joe Woelfel worked at Dragon Systems, where he led small the developmentof an extensible
voice architecture. In the years before that, Joe developedGE-Fanuc’s statistical process control
software package, and the Galileo Company’s Catpac Text Analysis software, both of which
continue to be widely used today. Joe earned a B.S. in Physicsfrom SUNY Albany and an M.S.
in Communication and Information Science from Rutgers University. Joe is currently working at
Mitsubishi Electric Research Labs (MERL), exploring the use of speech recognition to retrieve
information with applications for cellphones, PDAs, automobiles and home entertainment.


	Sphinx-4: A Flexible Open Source Framework for Speech Recognition
	Abstract
	Copyright
	I. INTRODUCTION
	II. SELECTED HISTORICAL SPEECH RECOGNITION SYSTEMS
	III. SPHINX-4 FRAMEWORK
	IV. FRONTEND
	V. LINGUIST
	A. LanguageModel
	B. Dictionary
	C. AcousticModel
	D. SearchGraph
	E. Implementations

	VI. DECODER
	VII. DISCUSSION
	VIII. FUTURE WORK
	IX. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	About the Authors




