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ABSTRACT In the past decade, tremendous advances in
the state of the art of automatic speech recognition by machine
have taken place. A reduction in the word error rate by more
than a factor of 5 and an increase in recognition speeds by
several orders of magnitude (brought about by a combination
of faster recognition search algorithms and more powerful
computers), have combined to make high-accuracy, speaker-
independent, continuous speech recognition for large vocab-
ularies possible in real time, on off-the-shelf workstations,
without the aid of special hardware. These advances promise
to make speech recognition technology readily available to the
general public. This paper focuses on the speech recognition
advances made through better speech modeling techniques,
chiefly through more accurate mathematical modeling of
speech sounds.

More and more, speech recognition technology is making its
way from the laboratory to real-world applications. Recently,
a qualitative change in the state of the art has emerged that
promises to bring speech recognition capabilities within the
reach of anyone with access to a workstation. High-accuracy,
real-time, speaker-independent, continuous speech recogni-
tion for medium-sized vocabularies (a few thousand words) is
now possible in software on off-the-shelf workstations. Users
will be able to tailor recognition capabilities to their own
applications. Such software-based, real-time solutions usher in
a whole new era in the development and utility of speech
recognition technology.

As is often the case in technology, a paradigm shift occurs
when several developments converge to make a new capability
possible. In the case of continuous speech recognition, the
following advances have converged to make the new technol-
ogy possible:

® higher-accuracy continuous speech recognition, based on
better speech modeling techniques;

® better recognition search strategies that reduce the time
needed for high-accuracy recognition; and

® increased power of audio-capable, off-the-shelf work-

stations.
The paradigm shift is taking place in the way we view and use
speech recognition. Rather than being mostly a laboratory
endeavor, speech recognition is fast becoming a technology
that is pervasive and will have a profound influence on the way
humans communicate with machines and with each other.

This paper focuses on speech modeling advances in contin-
uous speech recognition, with an exposition of hidden Markov
models (HMMs), the mathematical backbone behind these
advances. While knowledge of properties of the speech signal
and of speech perception have always played a role, recent
improvements have relied largely on solid mathematical and
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probabilistic modeling methods, especially the use of HMMs
for modeling speech sounds. These methods are capable of
modeling time and spectral variability simultaneously, and the
model parameters can be estimated automatically from given
training speech data. The traditional processes of segmenta-
tion and labeling of speech sounds are now merged into a single
probabilistic process that can optimize recognition accuracy.

This paper describes the speech recognition process and
provides typical recognition accuracy figures obtained in lab-
oratory tests as a function of vocabulary, speaker dependence,
grammar complexity, and the amount of speech used in
training the system. As a result of modeling advances, recog-
nition error rates have dropped several fold. Important to
these improvements have been the availability of common
speech corpora for training and testing purposes and the
adoption of standard testing procedures.

We will argue that future advances in speech recognition
must continue to rely on finding better ways to incorporate our
speech knowledge into advanced mathematical models, with
an emphasis on methods that are robust to speaker variability,
noise, and other acoustic distortions.

THE SPEECH RECOGNITION PROBLEM

Automatic speech recognition can be viewed as a mapping
from a continuous-time signal, the speech signal, to a sequence
of discrete entities—for example, phonemes (or speech
sounds), words, and sentences. The major obstacle to high-
accuracy recognition is the large variability in the speech signal
characteristics. This variability has three main components:
linguistic variability, speaker variability, and channel variabil-
ity. Linguistic variability includes the effects of phonetics,
phonology, syntax, semantics, and discourse on the speech
signal. Speaker variability includes intra- and interspeaker
variability, including the effects of coarticulation—that is, the
effects of neighboring sounds on the acoustic realization of a
particular phoneme due to continuity and motion constraints
on the human articulatory apparatus. Channel variability
includes the effects of background noise and the transmission
channel (e.g., microphone, telephone, reverberation). All
these variabilities tend to shroud the intended message with
layers of uncertainty, which must be unraveled by the recog-
nition process. This paper will focus on modeling linguistic and
speaker vatiabilities for the speech recognition problem.
Units of Speech. To gain an appreciation of what modeling
is required to perform recognition, we shall use as an example
the phrase “grey whales,” whose speech signal is shown at the
bottom of Fig. 1 with the corresponding spectrogram (or voice
print) shown immediately above. The spectrogram shows the
result of a frequency analysis of the speech, with the dark bands
representing resonances of the vocal tract. At the top of Fig.
1 are the two words “grey” and “whales,” which are the desired
output of the recognition system. The first thing to note is that
the speech signal and the spectrogram show no separation
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between the two words “grey” and “whales™ at all; they are in
fact connected, as is typical of continuous speech.

Below the word level in Fig. 1 is the phonetic level. Here the
words are represented in terms of a phonetic alphabet that tells
us what the different sounds in the two words are. In this case
the phonetic transcription is given by [g r ¢/ w €Y | z]. Again,
while the sequence of phonemes is discrete, there is no physical
separation between the different sounds in the speech signal.
In fact, it is not clear where one sound ends and the next begins.
The dashed vertical lines shown in Fig. 1 give a rough seg-
mentation of the speech signal, which shows approximately the
correspondences between the phonemes and the speech.

Now, the phoneme [e¥] occurs once in each of the two words.
If we look at the portions of the spectrogram corresponding to
the two [eY] phonemes, we notice some similarities between the
two parts, but we also note some differences. The differences
are mostly due to the fact that the two phonemes are in
different contexts: the first [e¥] phoneme is preceded by [r] and
followed by [w], while the second is preceded by [w] and
followed by [1]. These contextual effects are the result of what
is known as coarticulation, the fact that the articulation of each
sound blends into the articulation of the following sound. In
many cases, contextual phonetic effects span several pho-
nemes, but the major effects are caused by the two neighboring
phonemes.

To account for the fact that the same phoneme has different
acoustic realizations, depending on the context, we refer to
each specific context as an allophone. Thus, in Fig. 1, we have
two different allophones of the phoneme [eY], one for each of
the two contexts in the two words. In this way, we are able to
deal with the phonetic variability that is inherent in coarticu-
lation and that is evident in the spectrogram of Fig. 1.

To perform the necessary mapping from the continuous
speech signal to the discrete phonetic level, we insert a
model—a finite-state machine in our case—for each of the

allophones that are encountered. We note from Fig. 1 that the
structures of these models are identical; the differences will be
in the values given to the various model parameters. Each of
these models is a hidden Markov model, which is discussed
below.

HIDDEN MARKOV MODELS

Markov Chains. Before we explain what a hidden Markov
model is, we remind the reader of what a Markov chain is. A
Markov chain consists of a number of states, with transitions
among the states. Associated with each transition is a proba-
bility and associated with each state is a symbol. Fig. 2 shows
a three-state Markov chain, with transition probabilities a;;
between states i and j. The symbol A is associated with state
1, the symbol B with state 2, and the symbol C with state 3. As
one transitions from state 1 to state 2, for example, the symbol
B is produced as output. These symbols are called output
symbols because a Markov chain is thought of as a generative
model; it outputs symbols as one transitions from one state to
another. Note that in a Markov chain the transitioning from

ay

FIG. 2. A three-state Markov chain.
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FIG. 3. A three-state HMM.

one state to another is probabilistic, but the production of the
output symbols is deterministic.

Now, given a sequence of output symbols that were gener-
ated by a Markov chain, one can retrace the corresponding
sequence of states completely and unambiguously (provided
the output symbol for each state was unique). For example, the
sample symbol sequence BA A CB B A C C C A is produced
by transitioning into the following sequence of states: 2113
2213331.

Hidden Markov Models. A hidden Markov model (HMM)
is the same as a Markov chain, except. for one important
difference: the output symbols in an HMM are probabilistic.
Instead of associating a single output symbol per state, in an
HMM all symbols are possible at each state, each with its own
probability. Thus, associated with each state is a probability
distribution of all the output symbols. Furthermore, the num-
ber of output symbols can be arbitrary. The different states
may then have different probability distributions defined on
the set of output symbols. The probabilities associated with
states are known as output probabilities.

Fig. 3 shows an example of a three-state HMM. It has the
same transition probabilities as the Markov chain of Fig. 2.
What is different is that we associate a probability distribution
bi(s) with each state i, defined over the set of output symbols
s—in this case we have five output symbols—A, B, C, D, and
E. Now, when we transition from one state to another, the
output symbol is chosen according to the probability distribu-
tion corresponding to that state. Compared to a Markov chain,
the output sequences generated by an HMM are what is known
as doubly stochastic: not only is the transitioning from one
state to another stochastic (probabilistic) but so is the output
symbol generated at each state.

3-STATE HMM
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Now, given a sequence of symbols generated by a particular
HMM, it is not possible to retrace the sequence of states
unambiguously. Every sequence of states of the same length as
the sequence of symbols is possible, each with a different
probability. Given the sample output sequence—C D A ABE
D B A C C—there is no way for sure to know which sequence
of states produced these output symbols. We say that the
sequence of states is hidden in that it is hidden from the
observer if all one sees is the output sequence, and that is why
these models are known as hidden Markov models.

Even though it is not possible to determine for sure what
sequence of states produced a particular sequence of symbols,
one might be interested in the sequence of states that has the
highest probability of having generated the given sequence.

Phonetic HMMs. We now explain how HMMs are used to
model phonetic speech events. Fig. 4 shows an example of a
three-state HMM for a single phoneme. The first stage in the
continuous-to-discrete mapping that is required for recogni-
tion is performed by the analysis or feature extraction box
shown in Fig. 5. Typically, the analysis consists of estimation of
the short-term spectrum of the speech signal over a frame
(window) of about 20 ms. The spectral computation is then
updated about every 10 ms, which corresponds to a frame rate
of 100 frames per second. This completes the initial discreti-
zation in time. However, the HMM, as depicted in this paper,
also requires the definition of a discrete set of “output
symbols.” So, we need to discretize the spectrum into one of
a finite set of spectra. Fig. 4 depicts a set of spectral templates
(known as a codebook) that represent the space of possible
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speech spectra. Given a computed spectrum for a frame of
speech, one can find the template in the codebook that is
“closest” to that spectrum, using a process known as vector
quantization (1). The size of the codebook in Fig. 4 is 256
templates. These templates, or their indices (from 0 to 255),
serve as the output symbols of the HMM. We see in Fig. 4 that
associated with each state is a probability distribution on the
set of 256 symbols. The definition of a phonetic HMM is now
complete. We now describe how it functions.

Let us first see how a phonetic HMM functions as a
generative (synthesis) model. As we enter into state 1 in Fig.
4, one of the 256 output symbols is generated based on the
probability distribution corresponding to state 1. Then, based
on the transition probabilities out of state 1, a transition is
made either back to state 1 itself, to state 2, or to state 3, and
another symbol is generated based on the probability distri-
bution corresponding to the state into which the transition is
made. In this way a sequence of symbols is generated until a
transition out of state 3-is made. At that point, the sequence
corresponds to a single phoneme.

The same model can be used in recognition mode. In this
mode each model can be used to compute the probability of
having generated a sequence of spectra. Assuming we start
with state 1 and given an input speech spectrum that has been
quantized to one of the 256 templates, one can perform a table
lookup to find the probability of that spectrum. If we now
assume that a transition is made from state 1 to state 2, for
example, the previous output probability is multiplied by the
transition probability from state 1 to state 2 (0.5 in Fig. 4). A
new spectrum is now computed over the next frame of speech
and quantized; the corresponding output probability is then
determined from the output probability distribution corre-
sponding to state 2. That probability is multiplied by the
previous product, and the process is continued until the model
is exited. The result of multiplying the sequence of output and
transition probabilities gives the total probability that the input
spectral sequence was ‘“generated” by that HMM using a
specific sequence of states. For every sequence of states, a
different probability value results. For recognition, the prob-
ability computation just described is performed for all possible
phoneme models and all possible state sequences. The one
sequence that results in the highest probability is declared to
be the recognized sequence of phonemes.

We note in Fig. 4 that not all transitions are allowed (i.e., the
transitions that do not appear have a probability of zero). This
model is what is known as a “left-to-right” model, which
represents the fact that, in speech, time flows in a forward
direction only; that forward direction is represented in Fig. 4
by a general left-to-right movement. Thus, there are no
transitions allowed from right to left. Transitions from any
state back to itself serve to model variability in time, which is
very necessary for speech since different instantiations of
phonemes and words are uttered with different time registra-
tions. The transition from state 1 to state 3 means that the
shortest phoneme that is modeled by the model in Fig. 4 is one
that is two frames long, or 20 ms. Such a phoneme would
occupy state 1 for one frame and state 3 for one frame only.
One explanation for the need for three states, in general, is that
state 1 corresponds roughly to the left part of the phoneme,
state 2 to the middle part, and state 3 to the right part. (More
states can be used, but then more data would be needed to
estimate their parameters robustly.)

Usually, there is one HMM for each of the phonetic contexts
of interest. Although the different contexts could have differ-
ent structures, usually all such models have the same structure
as the one shown in Fig. 4; what makes them different are the
transition and output probabilities.
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A HISTORICAL OVERVIEW

HMM theory was developed in the late 1960s by Baum and
Eagon (2) at the Institute for Defense Analyses (IDA). Initial
work using HMMs for speech recognition was performed in
the 1970s at IDA, IBM (3), and Carnegie—Mellon University
(4). In 1980 a number of researchers in speech recognition in
the United States were invited to a workshop in which IDA
researchers reviewed the properties of HMM:s and their use for
speech recognition. That workshop prompted a few organiza-
tions, such as AT&T and BBN, to start working with HMMs
(5, 6). In 1984 a program in continuous speech recognition was
initiated by the Advanced Research Projects Agency (ARPA),
and soon thereafter HMMs were shown to be superior to other
approaches (7). Until then, only a handful of organizations
worldwide had been working with HMMs. Because of the
success of HMMs and because of the strong influence of the
ARPA program, with its emphasis on periodic evaluations
using common speech corpora, the use of HMM:s for speech
recognition started to spread worldwide. Today, their use has
dominated other approaches to speech recognition in dozens
of laboratories around the globe. In addition to the laborato-
ries mentioned above, significant work is taking place at, for
example, the Massachusetts Institute of Technology’s Lincoln
Laboratory, Dragon, SRI, and TI in the United States; CRIM
and BNR in Canada; RSRE and Cambridge University in the
United Kingdom; ATR, NTT, and NEC in Japan; LIMSI in
France; Philips in Germany and Belgium; and CSELT in Italy,
to name a few. Comprehensive treatments of HMMs and their
utility in speech recognition can be found in Rabiner (8), Lee
(9), Huang et al. (10), Rabiner and Juang (11), and the
references therein. Research results in this area are usually
reported in the following journals and conference proceedings:
IEEE Transactions on Speech and Audio Processing; IEEE
Transactions on Signal Processing; Speech Communication Jour-
nal; IEEE International Conference on Acoustics, Speech, and
Signal Processing; EuroSpeech; and the International Confer-
ence on Speech and Language Processing.

HMMs have proven to be a good model of speech variability
in time and feature space. The automatic training of the
models from speech data has accelerated the speed of research
and improved recognition performance. Also, the probabilistic
formulation of HMMs has provided a unified framework for
scoring of hypotheses and for combining different knowledge
sources. For example, the sequence of spoken words can also
be modeled as the output of another statistical process (12). In
this way it becomes natural to combine the HMMs for speech
with the statistical models for language.

TRAINING AND RECOGNITION

Fig. 5 shows a block diagram of a general system for training
and recognition. Note that in both training and recognition the
first step in the process is to perform feature extraction on the
speech signal.

Feature Extraction. In theory it should be possible to recognize
speech directly from the signal. However, because of the large
variability of the speech signal, it is a good idea to perform some
form of feature extraction to reduce that variability. In particular,
computing the envelope of the short-term spectrum reduces the
variability significantly by smoothing the detailed spectrum, thus
eliminating various source characteristics, such as whether the
sound is voiced or fricated, and, if voiced, it eliminates the effect
of the periodicity or pitch. The loss of source information does not
appear to affect recognition performance much because it turns
out that the spectral envelope is highly correlated with the source
information.

One reason for computing the short-term spectrum is that
the cochlea of the human ear performs a quasi-frequency
analysis. The analysis in the cochlea takes place on a nonlinear
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frequency scale (known as the Bark scale or the mel scale).
This scale is approximately linear up to about 1000 Hz and is
approximately logarithmic thereafter. So, in the feature ex-
traction, it is very common to perform a frequency warping of
the frequency axis after the spectral computation.

Researchers have experimented with many different types of
features for use with HMMs (11). Variations on the basic
spectral computation, such as the inclusion of time and
frequency masking, have been shown to provide some benefit
in certain cases. The use of auditory models as the basis for
feature extraction has been useful in some systems (13),
especially in noisy environments (14).

Perhaps the most popular features used for speech recog-
nition with HMMs today are what are known as mel-frequency
cepstral coefficients or MFCCs (15). After the mel-scale
warping of the spectrum, the logarithm of the spectrum is
taken and an inverse Fourier transform results in the cepstrum.
By retaining the first dozen or so coefficients of the cepstrum,
one would be retaining the spectral envelope information that
is desired. The resulting features are the MFCCs, which are
treated as a single vector and are typically computed for every
frame of 10 ms. These feature vectors form the input to the
training and recognition systems.

Training. Training is the process of estimating the speech
model parameters from actual speech data. In preparation for
training, what is needed is the text of the training speech and
a lexicon of all the words in the training, along with their
pronunciations, written down as phonetic spellings. Thus, a
transcription of the training speech is made by listening to the
speech and writing down the sequence of words. All the distinct
words are then placed in a lexicon and someone has to provide
a phonetic spelling of each word. In cases where a word has more
than one pronunciation, as many phonetic spellings as there are
pronunciations are included for each word. These phonetic
spellings can be obtained from existing dictionaries or they can be
written by anyone with minimal training in phonetics.

Phonetic HMMs and lexicon. Given the training speech, the
text of the speech, and the lexicon of phonetic spellings of all
the words, the parameters of all the phonetic HMMs (transi-
tion and output probabilities) are estimated automatically
using an iterative procedure known as the Baum-Welch or
forward-backward algorithm (2). This algorithm estimates the
parameters of the HMMs so as to maximize the likelihood
(probability) that the training speech was indeed produced by
these HMMs. The iterative procedure is guaranteed to con-
verge to a local optimum. Typically, about five iterations
through the data are needed to obtain a reasonably good
estimate of the speech model. [See the paper by Jelinek (16)
for more details on the HMM training algorithm.]

It is 1mportant to emphasize the fact that HMM trammg
does not require that the data be labeled in detail in terms of
the location of the different words and phonemes; that is, no
time alignment between the speech and the text is needed.
Given a reasonable initial estimate of the HMM parameters,
the Baum-Welch training algorithm performs an implicit
alignment of the input spectral sequence to the states of the
HMM, which is then used to obtain an improved estimate. All
that is required in addition to the training speech is the text
transcription and the lexicon. This is one of the most important
properties of the HMM approach to recognition. Training
does require significant amounts of computing but does not
require much in terms of human labor.

In preparation for recognition it is important that the
lexicon contain words that would be expected to occur in
future data, even if they did not occur in the training. Typically,
closed-set word classes are filled out—for example, days of the
week, months of the year, numbers.

After completing the lexicon, HMM word models are
compiled from the set of phonetic models using the phonetic
spellings in the lexicon. These word models are simply a
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concatenation of the appropriate phonetic HMM models. We
then compile the grammar (which specifies sequences of
words) and the lexicon (which specifies sequences of pho-
nemes for each word) into a single probabilistic grammar for
the sequences of phonemes. The result of the recognition is a
particular sequence of words, corresponding to the recognized
sequence of phonemes.

Grammar. Another aspect of the training that is needed to
aid in the recognition is to produce the grammar to be used in
the recognition. Without a grammar, all words would be
considered equally likely at each point in an utterance, which
would make recognition difficult, especially with large vocab-
ularies. We, as humans, make enormous use of our knowledge
of the language to help us recognize what a person is saying.
A grammar places constraints on the sequences of the words
that are allowed, giving the recognition fewer choices at each
point in the utterance and, therefore, improving recognition
performance.- '

Most grammars used in speech recognition these days are
statistical Markov grammars that give the probabilities of
different sequences of words—so-called n-gram grammars.
For example, bigram grammars give the probabilities of all
pairs of words, while trigram grammars give the probabilities
of all triplets of words in the lexicon. In practice, trigrams
appear to be sufficient to embody much of the natural con-
straints imposed on the sequences of words in a language. In
an n-gram Markov grammar, the probability of a word is a
function of the previous n — 1 words. While this assumption
may not be valid in general, it appears to be sufficient to result
in good recognition accuracy. Furthermore, the assumption
allows for efficient computation of the likelihood of a sequence
of words.

A measure of how constrained a grammar is is given by its

perplexity (12). Perplexity is defined as 2 raised to the power

of the Shannon entropy of the grammar. If all words are
equally likely at each point in a sentence, the perplexity is equal
to the vocabulary size. In practice, sequences of words have
greatly differing probabilities, and the perplexity is often much
less than the vocabulary size, especially for larger vocabularies.
Because grammars are estimated from a set of training data,
it is often more meaningful to measure the perplexity on an
independent set of data, or what is known as test-set perplexity
(12). Test-set perplexity Q is obtained by computing

Q=Pw w,...wy) VM

where w; w, ... wy is the sequence of words obtained by
concatenating all the test sentences and P is the probability of
that whole sequence. Because of the Markov property of
n-gram grammars, the probability P can be computed as the
product of consecutive conditional probabilities of n-grams.
Recognition. As shown in Fig. 5, the recognition process
starts with the feature extraction stage, which is identical to
that performed in the training. Then, given the sequence of
feature vectors, the word HMM models, and the grammar, the
recognition is simply a large search among all possible word
sequences for that word sequence with the highest probability
to have generated the computed sequence of feature vectors.
In theory the search is exponential with the number of words
in the utterance. However, because of the Markovian property
of conditional independence in the HMM, it is possible to
reduce the search drastically by the use of dynamic program-
ming using, for example, the Viterbi algorithm (17). The
Viterbi algorithm requires computation that is proportional to
the number of states in the model and the length of the input
sequence. Further approximate search algorithms have been
developed that allow the search computation to be reduced
further, without significant loss in performance. The most
commonly used technique is the beam search (18), which
avoids the computation for states that have low probability.
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STATE OF THE ART

In this section we review the state of the art in continuous
speech recognition. We present some of the major factors that
led to the relatively large improvements in performance and
give sample performance figures under different conditions.
We then review several of the issues that affect performance,
including the effects of training and grammar, speaker-
dependent versus speaker-independent recognition, speaker
adaptation, nonnative speakers, and the inclusion of new
words in the speech. Most of the results and examples below
have been taken from the ARPA program, which has spon-
sored the collection and dissemination of large speech corpora
for comparative evaluation.

Improvements in Performance. The improvements in
speech recognition performance have been so dramatic that in
the ARPA program the word error rate has dropped by a factor
of 5 in 5 years! This unprecedented advance in the state of the
art is due to four factors: use of common speech corpora,
improved acoustic modeling, improved language modeling,
and a faster research experimentation cycle.

Common speech corpora. The ARPA program must be given
credit for starting and maintaining a sizable program in
large-vocabulary, speaker-independent, continuous speech
recognition. One of the cornerstones of the ARPA program
has been the collection and use of common speech corpora for
system development and testing. (The various speech corpora
collected under this program are available from the Linguistic
Data Consortium, with offices at the University of Pennsyl-
vania.) Through cycles of algorithm development, evaluation,
and sharing of detailed technical information, work in the
program led to the incredible reduction in error rate noted
above.

Acoustic modeling. A number of ideas in acoustic modeling
have led to significant improvements in performance. Devel-
oping HMM phonetic models that depend on context—that is,
on the left and right phonemes—have been shown to reduce
the word error rate by about a factor of 2 over context-
independent models (7). One of the properties of HMMs is
that different models (e.g., context-independent, diphone, and
triphone models) can be interpolated in such a way as to make
the best possible use of the training data, thus increasing the
robustness of the system.

The modeling of cross-word effects is also important, espe-
cially for small words, such as function words (where many of
the errors occur), and can reduce the overall word error rate
by about 20 percent.

In addition to the use of feature vectors, such as MFCCs, it
has been found that including what is known as delta fea-
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tures—the change in the feature vector over time—can reduce
the error rate by a factor of about 2 (19). The delta features are
treated like an additional feature vector whose probability
distribution must also be estimated from training data. Even
though the original feature vector contains all the information
that can be used for the recognition, it appears that the HMM
does not take full advantage of the time evolution of the
feature vectors. Computing the delta parameters is a way of
extracting that time information and providing it to the HMM
directly (20).

Proper estimation of the HMM parameters—the transition
and output probabilitiecs—from training data is of crucial
importance. Because only a small number of the possible
feature vector values will occur in any training set, it is
important to use probability estimation and smoothing tech-
niques that not only will model the training data well but also
will model other possible occurrences in future unseen data. A
number of probability estimation and smoothing techniques
have been developed that strike a good compromise between
computation, robustness, and recognition accuracy and have
resulted in error rate reductions of about 20 percent compared
to the discrete HMMs presented in this paper (10, 21-23).

Language modeling. Statistical n-gram grammars, especially
word trigrams, have been very successful in modeling the likely
word sequences in actual speech data. To obtain a good
language model, it is important to use as large a text corpus as
possible so that all the trigrams to be seen in any new test
material are seen in the training with about the same proba-
bility. Note that only the text is needed for training the
language model, not the actual speech. Typically, millions of
words of text are used to develop good language models. A
number of methods have been developed that provide a robust
estimate of the trigram probabilities (24, 25).

Research experimentation cycle. We have emphasized above
the recognition improvements that have been possible with
innovations in algorithm development. However, those im-
provements would not have been possible without the proper
computational tools that have allowed the researcher to
shorten the research experimentation cycle. Faster search
algorithms, as well as faster workstations, have made it possible
to run a large experiment in a short time, typically overnight,
so that the researcher can make appropriate changes the next
day and run another experiment. The combined increases in
speed with better search and faster machines have been several
orders of magnitude.

Sample Performance Figures. Fig. 6 gives a representative
sampling of state-of-the-art continuous speech recognition
performance. The performance is shown in terms of the word
error rate, which is defined as the sum of word substitutions,

Training Data Vocabulary Test Data \ENord
Corpus rror
Type Amount | Size glpenl | Type Perplexity | Rate
T
Digits Read 4 hrs Closed Read 1 0.3%
ARPA
Resource Read 4hrs 1000 Closed Read 60 4%
Management
ARPA )
Airline Spontaneous| 13 hrs 1800 Open Spontaneous 12 4%
Travel
Read 12 hrs 5000 | Closed Read 45 5%
ARPA
Wall Street
Journal Read 12hrs 20,000 | Open Read 200 13%
Dictation
Read 12 hrs 20,000 Open Spontaneous 255 26%

Fic. 6. State of the art in speaker-independent, continuous speech recognition.
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deletions, and insertions, as a percentage of the actual number
of words in the test. All training and test speakers were native
speakers of American English. The error rates are for speaker-
independent recognition; that is, test speakers were different
from the speakers used for training. All the results in Fig. 6 are
for laboratory systems; they were obtained from refs. 26-30.

The results for four corpora are shown: the TI connected-
digit corpus (31), the ARPA Resource Management corpus
(32), the ARPA Airline Travel Information Service (ATIS)
corpus (33), and the ARPA Wall Street Journal (WSJ) corpus
(34). The first two corpora were collected in very quiet rooms
at TI, while the latter two were collected in office environ-
ments at several different sites. The ATIS corpus was collected
from subjects trying to access airline information by voice
using natural English queries; it is the only corpus of the four
presented here for which the training and test speech are
spontaneous instead of being read sentences. The WSJ corpus
consists largely of read sentences from the Wall Street Journal,
with some spontaneous sentences used for testing. Shown in
Fig. 6 are the vocabulary size for each corpus and whether the
vocabulary is closed or open. The vocabulary is closed when all
the words in the test are guaranteed to be in the system’s
lexicon, while in the open condition the test may contain words
that are not in the system’s lexicon and, therefore, will cause
errors in the recognition. The perplexity is the test-set per-
plexity defined above. Strictly speaking, perplexity is not
defined for the open-vocabulary condition, so the value of the
perplexity that is shown was obtained by making some simple
assumptions about the probability of n-grams that contain the
unknown words.

The results shown in Fig. 6 are average results over a number
of test speakers. The error rates for individual speakers vary
over a relatively wide range and may be several times lower or
higher than the average values shown. Since much of the data
were collected in relatively benign conditions, one would
expect the performance to degrade in the presence of noise
and channel distortion. It is clear from Fig. 6 that higher
perplexity, open vocabulary, and spontaneous speech tend to
increase the word error rate. We shall quantify some of these
effects next and discuss some important issues that affect
performance.

Effects of Training and Grammar. It is well recognized that
increasing the amount of training data generally decreases the
word error rate. However, it is important that the increased
training be representative of the types of data in the test.
Otherwise, the increased training might not help.

With the RM corpus, it has been found that the error rate
is inversely proportional to the square root of the amount of
training data, so that quadrupling the training data results in
cutting the word error rate by a factor of 2. This large reduction
in error rate by increasing the training data may have been the
result of an artifact of the RM corpus; namely, that the
sentence patterns of the test data were the same as those in the
training. In a realistic corpus, where the sentence patterns of
the test can often be quite different from the training, such
improvements may not be as dramatic. For example, recent
experiments with the WSJ corpus have failed to show signif-
icant reduction in error rate by doubling the amount of
training. However, it is possible that increasing the complexity
of the models as the training data are increased could result in
larger reduction in the error rate. This is still very much a
research issue.

Word error rates generally increase with an increase in
grammar perplexity. A general rule of thumb is that the error
rate increases as the square root of perplexity, with everything
else being equal. This rule of thumb may not always be a good
predictor of performance, but it is a reasonable approximation.
Note that the size of the vocabulary as such is not the primary
determiner of recognition performance but rather the free-
dom in which the words are put together, which is represented
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by the grammar. A less constrained grammar, such as in the
WSIJ corpus, results in higher error rates.

Speaker-Dependent vs. Speaker-Independent Recognition.
The terms speaker-dependent (SD) and speaker-independent
(SI) recognition are often used to describe different modes of
operation of a speech recognition system. SD recognition
refers to the case when a single speaker is used to train the
system and the same speaker is used to test the system. SI
recognition refers to the case where the test speaker is not
included in the training. HMM-based systems can operate in
either SD or SI mode, depending on the training data used. In
SD mode training speech is collected from a single speaker
only, while in SI mode training speech is collected from a
variety of speakers.

SD and SI modes of recognition can be compared in terms of
the word error rates for a given amount of training. A general rule
of thumb is that, if the total amount of training speech is fixed at
some level, the SI word error rates are about four times the SD
error rates. Another way of stating this rule of thumb is that, for
SI recognition to have the same performance as SD recognition,
requires about 15 times the amount of training data (35). These
results were obtained when 1 hr of speech was used to compute
the SD models. However, in the limit, as the amount of training
speech for SD and SI models is made larger and larger, it is not
clear that any amount of training data will allow SI performance
to approach SD performance.

Adaptation. It is possible to improve the performance of an
SI system by incrementally adapting to the voice of a new
speaker as the speaker uses the system. This would be espe-
cially needed for atypical speakers with high error rates who
might otherwise find the system unusable. Such speakers
would include speakers with unusual dialects and those for
whom the SI models simply are not good models of their
speech. However, incremental adaptation could require hours
of usage and a lot of patience from the new user before the
performance becomes adequate.

A good solution to the atypical speaker problem is to use a
method known as rapid speaker adaptation. In this method
only a small amount of speech (about 2 min) is collected from
the new speaker before using the system. By having the same
utterances collected previously from one or more prototype
speakers, methods have been developed for deriving a speech
model for the new speaker through a simple transformation on
the speech model of the prototype speakers (36-38). It is
possible with these methods to achieve average SI perfor-
mance for speakers who otherwise would have several times
the error rate.

Out-of-Vocabulary Words. Out-of-vocabulary words cause
recognition errors and degrade performance. There have been
very few attempts at automatically detecting the presence of
new words, with limited success (39). Most systems simply do
not do anything special to deal with the presence of such words.
Experiments have shown that, if the new words are added to
the system’s lexicon but without additional training for the new
words, the SI error rate for the new words is about twice that
with training that includes the new words. Therefore, user-
specified vocabulary and grammar can be easily incorporated
into a speech recognition system at a modest increase in the
error rate for the new words.

REAL-TIME SPEECH RECOGNITION

Until recently, it was thought that to perform high-accuracy,
real-time, continuous speech recognition for large vocabular-
ies would require either special-purpose VLSI hardware or a
multiprocessor. However, new developments in search algo-
rithms have sped up the recognition computation at least two
orders of magnitude, with little or no loss in recognition
accuracy (40-44). In addition, computing advances have
achieved two-orders-magnitude increase in workstation
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speeds in the past decade. These two advances have made
software-based, real-time, continuous speech recognition a
reality. The only requirement is that the workstation must have
an A/D converter to digitize the speech. All the signal
processing, feature extraction, and recognition search is then
performed in software in real time on a single-processor
workstation.

For example, it is now possible to perform a 2000-word ATIS
task in real time on workstations such as the Silicon Graphics
Indigo R3000 or the Sun SparcStation 2. Most recently, a
20,000-word WSJ continuous dictation task was demonstrated
in real time (45) on a Hewlett—Packard 735 workstation, which
has about three times the power of an SGI R3000. Thus, the
computation grows much slower than linear with the size of the
vocabulary.

The real-time feats just described have been achieved at a
relatively small cost in word accuracy. Typically, the word error
rates are less than twice those of the best research systems.

CONCLUDING REMARKS

We are on the verge of an explosion in the integration of
speech recognition in a large number of applications. The
ability to perform software-based, real-time recognition on a
workstation will no doubt change the way people think about
speech recognition. Anyone with a workstation can now have
this capability on their desk. In a few years, speech recognition
will be ubiquitous and will enter many aspects of our lives. This
paper reviewed the technologies that made these advances
possible.

Despite all these advances, much remains to be done. Speech
recognition performance for very large vocabularies and larger
perplexities is not yet adequate for useful applications, even
under benign acoustic conditions. Any degradation in the
environment or changes between training and test conditions
causes a degradation in performance. Therefore, work must
continue to improve robustness to varying conditions: new
speakers, new dialects, different channels (microphones, tele-
phone), noisy environments, and new domains and vocabular-
ies. What will be especially needed are improved mathematical
models of speech and language and methods for fast adapta-
tion to new conditions.
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