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Topic Segmentation

Matthew Purver

Queen Mary University of London

This chapter discusses the task of topic segmentation: automatically dividing single long recordings or
transcripts into shorter, topically coherent segments. First, we look at the task itself, the applications
which require it, and some ways to evaluate accuracy. We then explain the most influential approaches
– generative and discriminative, supervised and unsupervised – and discuss their application in
particular domains.

1.1 Task Description

1.1.1 Introduction

So far, we have mainly looked at techniques for understanding on a fine-grained, bottom-up
level: identifying fundamental units of meaning or interactional structure, such as sentences,
named entities and dialogue acts. In this chapter, we look at the problem from a more coarse-
grained, top-down perspective: given a complete recording or transcript (which may be quite
long, and include talk on all sorts of different subjects) can we divide it into shorter, more
useful, topically coherent segments?

There are many reasons why we might want to do this, but perhaps the most obvious
is that it makes it much easier for a user to browse or search the results. Imagine being
faced with a long uninterrupted transcript of a news broadcast or a business meeting. If you
want to find a particular news story, or the discussion of a particular subject, you’re faced
with a problem - particularly if you don’t want to read or listen to the whole thing. You
could search for relevant keywords, of course: but finding them doesn’t tell you where the
part you’re interested in starts (or ends). There’s no guarantee that you’ll find the keywords
you’ve chosen either, of course - particularly if ASR word error rates are high. But if you’re
given the same transcript divided up into segments, with each corresponding to a different
topic (or news story, or agenda item), the task becomes much easier. If you can find the
keywords you’re looking for in a particular segment, you just have to go to the beginning of
that segment and start listening (or reading). In the worst case, you could examine the start of
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2 Topic Segmentation

each segment until you find what you’re looking for: still much easier than reading the whole
thing.

We can go much further than this, of course: we might want to analyse or classify the
contents of each segment, so that we can relate topics from one meeting to another, or
track the progress of news stories across different broadcasts. We might want to produce
a condensed summary, with the highlights of each topic (the main headlines of a news story,
or the final decision and action items of a meeting agenda item). We’ll look at some of
these more advanced tasks in later chapters. But the first pre-requisite for each of them is to
understand the topic structure: when does the conversation move from one topic to another?
When does one topic end, and another one start?

1.1.2 What is a Topic?

The answer to that question, of course, depends to a large extent on what exactly we mean
by a topic – and this can be hard to define. In particular applications, it may seem obvious: if
we’re interested in segmenting a news broadcast, our notion of a topic probably corresponds
to an individual news story or report. If we want to segment a court transcript, we might
be more concerned with the segments in which different arguments are being presented, or
different pieces of evidence are being discussed. We might want to divide a business meeting
according to the items on the agenda.

However, sometimes it’s not so clear. We can imagine a discussion of a single agenda item
in a meeting, but which consists of several distinct phases: perhaps a round-table discussion
of the problem in hand, then a couple of presentations from individuals on their proposed
solutions, and then a concluding decision-making section. While the subject matter might
be broadly topically coherent, we can see the segments as representing separate activities
(discussion vs. presentation), or in the terms of Passonneau and Litman (1997), different
intentions (question-raising vs. information-giving vs. decision-making). Whether we want
to include all of these in one segment, or treat them all separately, really depends on our
intentions as users: our interests and desired application (see e.g. Niekrasz and Moore 2009,
for discussion in more depth).

This means that in some domains, segmentation can be a hard task even for humans,
particularly where subject matter and discourse structure is less constrained. Gruenstein et
al. (2008) asked annotators to mark topic shifts in the ICSI Meeting Corpus (Janin et al.
2003) – a collection of open-domain, mostly loosely-structured meetings on subjects which
the annotators themselves were not familiar with – and found that they did not agree with
each other at all well, especially as the notion of topic became more fine-grained. If people
have a clear idea of what they are looking for, though, agreement gets much better: Banerjee
and Rudnicky (2007) found that agreement improved significantly if annotators were given
more information (an agenda list from which to choose topics). Galley et al. (2003) also found
that annotators could achieve reasonable agreement if they stuck to coarse-grained topics –
although even then some meetings were problematic.

1.1.3 Linear vs. Hierarchical Segmentation

One of the reasons that it can be hard to define exactly what a topic consists of, and where
it starts and ends, is that topics (and discourse itself) often display a hierarchical structure
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(see e.g. Grosz and Sidner 1986; Mann and Thompson 1988; Marcu 2000; Polanyi 1988).
Just as stretches of dialogue can be analysed as being composed of smaller sub-episodes,
we can often think of topics and their discussion as being composed of sub-topics and sub-
discussions. It might be that an ideal approach to assigning topic structure would be one
which assigned not only a linear segmentation, as we’ve discussed so far, but a hierarchical
structure. Retrieval and browsing would then benefit even more, as a user could refine the
level of granularity as desired.

However, producing a fine-grained segmentation turns out to be an extremely difficult task.
For one thing, as we zoom in to ever-finer distinctions, the information we need to segment
the discourse becomes harder to produce. While distinguishing between broad-brush topics
might be achievable just from looking at the words people use, or the way people behave (as
we’ll see below), distinguishing between the discussion of distinct but related issues really
requires us to understand something about the semantics of individual contributions and how
they inter-relate: the questions people ask, the way they get answered, whether proposals are
accepted or not. This is hard: while there are formal models of dialogue which do deal with
these matters (see e.g. Asher and Lascarides 2003; Ginzburg 2011; Larsson 2002, amongst
others), applying them to open-domain speech isn’t yet achievable.

And secondly, it seems that fine sub-topic distinctions are hard for even humans to make.
Both Galley et al. (2003) and Gruenstein et al. (2008) found that annotators asked to mark
topic shifts over the open-domain ICSI Meeting Corpus often didn’t agree with each other
at all well; and while they might agree on coarser-grained top-level topics, their agreement
became worse on lower-level sub-topics. It may be that these lower-level distinctions really
depend on our intentions and requirements; the ideal segmentation may not be definable a
priori, but may depend on the view we take on the data and the use we’re going to put our
segmentation to.

Here, then, we restrict ourselves to the task of linear, coarse-grained segmentation: a well-
studied task with several alternative approaches, many of which show very encouraging
performance.

1.2 Basic Approaches, and the Challenge of Speech

The task has been approached in many different ways, and we’ll discuss a few of them in
more detail below. Here, we take a quick look at the two basic insights that most of them use;
while some algorithms are based on one more than another, many combine the two.

1.2.1 Changes in Content

The first one is that people talk about different topics in different ways: they use different
words, and refer to different things. If we are discussing a particular set of concepts, we will
use words relevant to those concepts; and discussion of particular people, objects or places
will involve a relevant set of names and related referring expressions. Repeated mention of
the same objects or concepts will therefore be associated with repeated reference, whether
by using the same words or phrases or by using co-referent or anaphoric terms (Morris and
Hirst 1991). Conversely, a change in topic will be associated with the introduction of new
vocabulary (Youmans 1991).
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If we look at a discussion containing different topical segments, then, we should see that
the vocabulary (and/or the set of referring expressions) being used remains relatively constant
during the discussion of each topic, but changes markedly when we move between them.
Regions with relatively small changes should then correspond to topic segments, with large
changes at the segment boundaries. The same may be true for features of the non-linguistic
content, depending on the domain: in multi-party dialogue we may find that different speakers
are more active during the discussion of different topics, or that people are more likely to look
at particular relevant objects or make characteristic gestures (see e.g. Eisenstein et al. 2008).

There are various ways we might be able to exploit this. We can use a discriminative
approach: use a suitable similarity metric to measure the difference between neighbouring
sections of the discourse directly, and hypothesize boundaries where this indicates large
(enough) differences (Hearst 1997). We could use clustering: group together neighbouring
sentences which appear very similar to each other until we build up a set of topic clusters
which cover the whole discourse (Reynar 1994). We can use a generative approach: estimate
language models for topics, and hypothesize boundaries by finding the most likely sequence
of topic states to generate the observed discourse (Yamron et al. 1998). But all use the
same basic insight: that topics are associated with content and therefore characterized by
a particular set of words, concepts and referents.

1.2.2 Distinctive Boundary Features

The second basic insight is that boundaries between topics have their own characteristic
features, independent of the subject matter. When switching from one topic to another, we
tend to signal this to our audience in various ways. Firstly, there are various cue words and
phrases (discourse markers) that directly provide clues about discourse structure (Grosz and
Sidner 1986; Hirschberg and Litman 1993), and we can signal the end of one topic, or the
beginning of another, by words like Okay, Anyway, So or Now. In certain domains there can
be more specific cues: formal meeting proceedings often see mention of the next item on the
agenda, and news broadcasts see reporters sign off at the end of their reports with their name
and network identifier (Beeferman et al. 1999).

There can also be cues in the prosodic features of the speech (Hirschberg and Nakatani
1998, 1996; Passonneau and Litman 1997). Just before moving to a new segment, it’s
common to pause for longer than usual. When starting a new segment, speakers then tend
to speed up, speak louder and pause less. Non-linguistic features can be useful here too:
topic changes may correspond to changes in physical posture of speaker or audience (Cassell
et al. 2001), or perhaps the introduction of new documents onto a meeting table.

The features that are most indicative of topic change will often depend on the nature of the
data: the domain, broadcast medium and the number of participants. But once these features
have been identified (using manual or standard automatic feature extraction methods), they
can be used to help segment the dialogue, either by inclusion in a discriminative classifier
(e.g. Galley et al. 2003) or as observed variables in a generative model associated with a
change in topic state (e.g. Dowman et al. 2008).
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1.2.3 Monologue

Automatic topic segmentation is less important in written language: text documents have
their own structure, marked more-or-less explicitly (Power et al. 2003), and we are as likely
to want to segment a document on the basis of its existing sections or chapters, or a news
story by its existing paragraphs, as we are to try to find our own independent segmentation.
There are certainly uses for automatic text segmentation – Hearst (1997) argues that breaking
up long unstructured paragraphs can aid retrieval and summarization, and Barzilay and Lee
(2004) use segmentation as the basis for automatic text generation – but it is really when we
look at transcripts of spoken language that segmentation becomes important.

The first serious efforts at topic segmentation were made on monologue, for example
stories told by individuals (Passonneau and Litman 1997) or transcripts of news broadcasts
(Allan et al. 1998). Before substantial collections of audio transcripts were available, some
work used simulated corpora, built by concatenating written texts without their structure (e.g.
Reynar 1994, with Wall Street Journal articles) – but the intention was to simulate a particular
kind of monologue in both content and structure.

Moving to spoken language must introduce speech recognition errors, of course; and given
the heavily lexical nature of the basic approaches outlined above, we can see that high error
rates might have quite serious effects. Being able to exploit non-lexical features such as
prosody, or even non-audio features such as video scene changes or interactional changes
can therefore be important. However, monologue data does have the major advantage of being
(usually) well-structured: we might expect the breaks between news stories, for example, to
be fairly clear.

1.2.4 Dialogue

Dialogue (between two or many people),1 though, can be a trickier problem. Face-to-face
human dialogue can be much harder to segment accurately than monologue data, even for
humans – dialogue in informal settings, in particular, typically flows much more smoothly,
with discussion often moving naturally from one subject to another without a clear break,
and is much less well-structured, with topics being revisited or interleaved. As a result of
this, and of the less controlled physical and audio environment that dialogues often occur in,
speech recognition error rates also tend to be significantly higher.

Some genres of dialogue lend themselves better to analysis than others, though, so it is
the more formal genres such as business meetings that have received most attention. Here,
the structure of the discussion tends to be more constrained: a meeting may have an agenda
item list at the start which drives the topic sequence. Information independent from the audio
stream may also be available, too: agenda-related documents to initialise language models,
observable topic-related behaviour such as note-taking, and perhaps even a set of minutes at
the end.

1It’s a common misconception that the word dialogue refers only to interaction between two people, and terms
like multilogue have been proposed to cover cases with more than two. In fact, the prefix in dialogue is not di-
(meaning two), but dia- (meaning across or through). While the distinction between two-party and multi-party
dialogue can be very useful in some contexts, we intend the term dialogue to cover both here.
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1.3 Applications and Benchmark Datasets

Clearly, this is only a useful task when applied to recordings of some length – short segments
of speech such as an utterance in a typical spoken dialogue system tend already to be topically
homogeneous and thus not to require segmentation. As a result, it only started to receive
attention once long recordings became available.

1.3.1 Monologue

Broadcast News

The DARPA Topic Detection and Tracking (TDT) project (TDT, Allan et al. 1998;
Doddington 1998, etc.) started much of the work in topic segmentation which forms the basis
of methods still used today, both for the task itself and its evaluation. The project focussed on
radio and TV news broadcasts, as well as text news stories from newswire and web sources.
The project involved much more than just segmentation: the overarching idea was to produce
methods to identify, cluster, track and link topics, thus enabling and improving access to
news stories via improved browsing and search. For the spoken rather than written part of the
data (i.e. the TV and radio broadcasts), though, segmentation becomes a necessary first step
before topic identification and other deeper annotation become possible.

The datasets produced are large, include manual topic segment annotations, and are
available via the Linguistic Data Consortium.2 Both the TDT2 and TDT3 collections include
audio recordings of over 600 hours, in English and Chinese – see the next chapter for more
details.

Lectures and Testimonies

Other monologue domains are also good candidates for automatic segmentation: one is
university lectures, which usually consist of long recordings with a distinct topical structure.
There is interest in making lectures available to students for real-time transcription or offline
browsing: segmentation would aid search and improve the ease of access. MIT has set
up a Lecture Browser project to work towards this, which has produced a large dataset
and investigated methods for segmentation (Glass et al. 2007).3 The European CHIL and
LECTRA projects have also produced lecture sets and systems for segmentation (Fügen et
al. 2006; Trancoso et al. 2006).4

The Shoah Foundation Institute have also built up a large dataset of 120,000 hours of
largely monologue spoken testimonies from Holocaust survivors.5 Such a large dataset
requires segmentation and topic identification to make search practical, but carries its own
challenges (Franz et al. 2003; Oard and Leuski 2003).

2See http://projects.ldc.upenn.edu/TDT/.
3See http://web.sls.csail.mit.edu/lectures/.
4See http://chil.server.de/ and http://www.l2f.inesc-id.pt/imt/lectra/.
5See http://college.usc.edu/vhi/.
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1.3.2 Dialogue

Meeting Understanding

While two-person dialogue systems have been the subject of a huge amount of research (not
to mention commercial interest), the dialogue they usually involve does not immediately lend
itself to segmentation of this kind. Utterances are usually short, and topics are often coherent
throughout dialogues and limited to a particular task (call routing, ticket booking and so on).
However, in multi-party dialogue the situation becomes very different, and one case in point
is business meetings: they can be long, involve several topics, and require indexing by topic
segment to allow a record to be usefully browsed or searched afterwards. User studies show
that people would like a meeting browser to help with general questions like “What was
discussed at the meeting?”, as well as more specific ones such as “What did X say about
topic Y?” (Banerjee et al. 2005; Lisowska 2003).

Two major collections of meeting data have been produced in recent years. The ICSI
Meeting Corpus (Janin et al. 2003) includes 75 recorded and transcribed meetings – all real
research group meetings – and is available via the LDC; topic segmentation annotations
are available separately (Galley et al. 2003; Gruenstein et al. 2008).6 The AMI Corpus
(McCowan et al. 2005) contains 100 hours of recorded and transcribed meetings, including
video as well as audio; most of the meetings involve actors playing a given scenario
resembling a product design process. This includes topic segmentation annotations as part
of the general release (Hsueh and Moore 2006).7

Tutorial Dialogues

There has been less work in topic segmentation for two-person dialogue, as discussed
above; but some domains involve longer and more varied conversations. One such is tutorial
dialogue, which can involve two-way dialogue which progresses between related topics;
some small datasets have been produced and investigated (see e.g. Olney and Cai 2005).

1.4 Evaluation Metrics
The nature of segmentation as a task means that the standard evaluation metrics one might use
in classification tasks aren’t always suitable. In this section, we see why that is, and examine
some alternatives that have been proposed.

1.4.1 Classification-Based

In the majority of classification tasks, evaluation metrics generally start by comparing each
instance in the classifier output to a gold standard to determine whether it is correct or
incorrect, and counting up the scores. From this we can determine a raw accuracy figure,
or more advanced measures such as precision, recall or F -score. We could apply the same
approach here simply by considering each potential boundary placement as an instance.

As potential boundaries, we can take sentence (or dialogue act) ends, and assume that
whatever classifier we use tells us for each candidate whether it is a boundary (a transition

6See http://www.icsi.berkeley.edu/Speech/mr/.
7See http://corpus.amiproject.org/.
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from one topic segment to another) or a non-boundary (just a transition between sentences
within the same segment). A hypothesized boundary in the same place as a true boundary
scores a hit; as does a hypothesized non-boundary in the same place as a true non-boundary.
Hypothesized boundaries where there is no true boundary are false positives; hypothesized
non-boundaries where there is a true boundary are false negatives. This way, we can calculate
the standard error metrics. (Automatic sentence segmentation errors may mean that we need
to align the output transcript with a true gold-standard transcript first, but we’ll ignore that
complication here). Figure 1.1 shows an example, representing boundaries by 1 and non-
boundaries by -:

sentences S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

actual - 1 - - - 1 - - - - 1 - 1
predicted 1 - - - 1 1 - - 1 - - 1 1

correct? N N Y Y N Y Y Y N Y N N Y

Figure 1.1 An example binary classification evaluation

Early work in topic segmentation used exactly this approach; Reynar (1994), for example,
evaluates his approach in terms of recall and precision. But we can see a problem (see e.g.
Beeferman et al. 1999; Passonneau and Litman 1996) if we compare the outputs of two
imaginary systems, one which is pretty terrible, and one which always gets quite close – see
Figure 1.2.

sentences S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

actual - - - 1 - - - - - - 1 - -
system 1 1 - - - - - 1 - - - - - -
system 2 - - 1 - - - - - - 1 - - -

Figure 1.2 Evaluating two very different systems

An evaluation on this basis will score both of them the same: both have 0% accuracy, as
neither get any hits. In a sentence segmentation task, this might not matter: the segments are
quite short, and a hypothesized sentence with “close” boundaries might be just as useless to
a parser as one whose boundaries are completely wrong. But with topic segmentation, we’d
really like to score system 2 higher than system 1: each of its boundaries is only 1 sentence
away from a true boundary, and its output would be quite helpful. As Beeferman et al. (1999)
put it:

In almost any conceivable application, a segmenting tool that consistently comes
close—off by a sentence, say—is preferable to one that places boundaries willy-
nilly. [. . . ] It is natural to expect that in a segmenter, close should count for
something.
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One simple way round this problem might be to allow hypothesized boundaries to score
a hit if they are “close to” true boundaries, rather than requiring that they be in exactly the
same place. Reynar (1994) does exactly this, giving an alternative evaluation figures which
allow matches within a 3-sentence window. The choice of window is arbitrary, of course, and
might depend on the data and application of interest; but more seriously, this essentially still
suffers from exactly the same problem – a hypothesized boundary just outside the “close”
window will score just as badly as one further away. It also fails to distinguish between a
perfect segmenter and one which always gets close. In general, then, we need a different
approach.

1.4.2 Segmentation-Based

Beeferman et al. (1999)’s Pk

To combat this problem, Beeferman et al. (1999) propose an alternative measure, Pk, which
expresses a probability of segmentation error: the average probability, given two points in
the dataset, that the segmenter is incorrect as to whether they are separated by a boundary or
not. (Note that as Pk scores are probabilities, they range between 0 and 1, but a higher score
means a less accurate segmenter: a higher probability of error).

To calculate Pk, we take a window of fixed width k and move it across the dataset, at each
step examining whether the hypothesized segmentation is correct about the separation (or
not) of the two ends of the window. For a single window position with start i and end j, we
can express this separation via the indicator function δS(i, j):

δS(i, j) =

{
1 if segmentation S assigns i and j to the same segment
0 otherwise

For a single window (i, j), the correctness of a hypothesized segmentation H relative to a
reference segmentation R can then be calculated as:

δH(i, j) ⊕ δR(i, j)

where ⊕ is the XNOR “both or neither” operator. This evaluates to 1 only if both sides equal
0 or both equal 1, and thus only if segmentationsH andR agree about the separation of i and
j. The inverse of this gives us our basic error function, giving 1 only if H and R disagree:

1− δH(i, j) ⊕ δR(i, j)

or equivalently:

δH(i, j) ⊕ δR(i, j)

where⊕ is the XOR operator. We can then obtain Pk by moving the window across the entire
dataset, summing this score, and dividing by the number of windows:

Pk =

∑N−k
i=1 δH(i, i+ k) ⊕ δR(i, i+ k)

(N − k)



10 Topic Segmentation

The choice of k is, in principle, arbitrary; but is generally set to be half the average segment
length in the reference segmentation R. This value ensures (under some assumptions) that
the four obvious baseline algorithms (hypothesizing no boundaries, boundaries everywhere,
evenly-spaced boundaries or randomly-spaced boundaries) all have Pk = 0.5. A perfect
segmenter will score 0, of course; a score of 1.0 will only be achieved by a truly terrible
segmenter which manages to hypothesize boundaries in all and only the wrong places.

It is helpful to look at the calculation of Pk in a slightly different way, which helps us see
how it relates to other possible measures, and when it might leave something to be desired.
Figure 1.3 shows examples of the four possible situations when comparing segmentations in
a fixed-width window:

Figure 1.3 Evaluating a hypothesized segmentation against a reference segmentation. From
(Beeferman et al. 1999). c©1999 Kluwer Academic Publishers. Included here by permission.

Windows (a) and (d) are both “correct”: the hypothesized and reference segmentations either
both show a boundary in the window or both show none. Window (b) shows a false negative
or miss – the hypothesized output has failed to spot a reference boundary; window (c) shows a
false positive or false alarm – the segmenter has hypothesized a boundary where none really
exists. Distinguishing these two situations can be helpful in evaluating the suitability of a
segmenter for a particular application (as with precision and recall for standard classification
tasks). We can do this by decomposing the calculation of Pk into two parts, one expressing
the probability of misses, and the probability of false alarms, using the general framework
used in the description of the evaluation in the original TDT program (Allan et al. 1998):

Pk = PMiss + PFalseAlarm

where

PMiss =

∑N−k
i=1 δH(i, i+ k) · (1− δR(i, i+ k))∑N−k

i=1 (1− δR(i, i+ k))

PFalseAlarm =

∑N−k
i=1 (1− δH(i, i+ k)) · δR(i, i+ k)∑N−k

i=1 δR(i, i+ k)
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Pevzner and Hearst (2002)’s WD

Pk clearly gives us a more suitable measure than a simple accuracy or F -score, and is still
perhaps the most widely-used metric for segmentation evaluation. However, Pevzner and
Hearst (2002) point out that it has several shortcomings, all of which essentially stem from
the fact that the underlying question it poses of the segmentations being compared is whether
they agree on whether two points are separated or not, rather on how many boundaries lie
between them. As Figure 1.4 shows, this can lead to situations where Pk fails to penalize
false alarms:

Figure 1.4 Pk can fail to penalize false alarms that fall within a window width k of a true boundary.
From (Pevzner and Hearst 2002).

Here, the false hypothesized boundary falls within the window width k of a true reference
boundary, and the Pk evaluation will rate all the windows shown as “correct” in that both
segmentations agree that the two ends of the windows fall into different segments. Misses
(false negatives) don’t suffer from the same problem, though, with the result that Pk can
effectively penalize them more than false alarms.

Instead, they propose a measure called WindowDiff (WD), which works in a similar way
by moving a fixed-width window across the data; this time, though, windows are scored as
“correct” if they assign the same number of segment boundaries between their start and end.
If bS(i, j) is the number of boundaries between i and j according to segmentation S, the
basic error function for a window becomes:

|bH(i, j)− bR(i, j)| > 0

Summing over windows and normalizing as before, we now obtain:

WD =

∑N−k
i=1 [|b(i, i+ k)− bR(i, i+ k)| > 0]

(N − k)

Again, WD is a measure of segmentation error - lower scores mean less error, with a
perfect segmenter scoring 0. And again, if we want to examine issues of precision and recall
independently, we can express it in terms of scores for misses and false alarms:
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WD = WDMiss +WDFalseAlarm

where

WDMiss =

∑N−k
i=1 [bH(i, i+ k) < bR(i, i+ k)]

(N − k)

WDFalseAlarm =

∑N−k
i=1 [bH(i, i+ k) > bR(i, i+ k)]

(N − k)

Georgescul et al. (2006a)’s Prerror

While WD does solve many of Pk’s problems, it has its own problems; not least of which,
it’s hard to know exactly what either of them really mean intuitively (other than in terms
of direct comparison to another system). Most recent work in topic segmentation uses both
metrics when reporting performance.

Recently, Georgescul et al. (2006a) have pointed out another problem with WD: that it
effectively assigns a lower penalty to misses than to false alarms. Looking at the formulation
for WDMiss and WDFalseAlarm above, we can see that both are normalized by the
number of windows (N − k). While this seems correct for false alarms (there are as many
opportunities for a false alarm as there are evaluation windows), it doesn’t for misses. If
we want to evaluate on the basis of the true probability of a miss, we must normalize the
number of misses by the number of opportunities for a miss – in other words, the number of
windows in which there is a boundary in the reference segmentation. They therefore propose
a modified normalization for the Miss term:

PrMiss =

∑N−k
i=1 [bH(i, i+ k) < bR(i, i+ k)]∑N−k

i=1 [bR(i, i+ k) > 0]

PrFalseAlarm =

∑N−k
i=1 [bH(i, i+ k) > bR(i, i+ k)]

(N − k)

The two terms can then be combined to give an overall error metric Prerror. Georgescul
et al. (2006a) propose that this term be weighted to allow a trade-off between the penalties
for misses and false alarms, depending on the application being considered:

Prerror = CMiss · PrMiss + CFalseAlarm · PrFalseAlarm

where 0 ≤ CMiss ≤ 1 is the cost of a miss, and 0 ≤ CFalseAlarm ≤ 1 is the cost of a false
alarm. SettingCMiss = CFalseAlarm = 0.5 will assign equal costs, and ensure that the trivial
no/all boundary baselines both get Prerror around 50%. This proposal hasn’t seen much
take-up yet, but does seem to promise an improved metric.
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1.4.3 Content-Based

This directly segmentation-based approach to evaluation has become the accepted standard. It
is worth noting here, though, that evaluating purely on the basis of the accuracy of boundary
placement may have its drawbacks. Firstly, as ASR and automatic sentence segmentation will
be errorful, the exact units (or time periods) over which to calculate the evaluation functions
can be unclear.

Secondly, and perhaps more importantly, this approach takes no notice of the content of
the topics themselves. Failure to detect a boundary between two very similar topics perhaps
ought to be penalized less than failure to detect one between two very different topics. It
may be, then, that error metrics which combine measures of segmentation accuracy with
measures of topic similarity can give us a more useful tool – see (Mohri et al. 2009) for a
suggestion along these lines. However, the suitability of any one method may well depend on
the application in mind, and the purpose to which the derived topics are to be put. The next
chapter will discuss topic classification, and suitable evaluation methods for that task; we
should remember that segmentation and classification are to a large degree joint problems,
and that evaluating one alone may not tell the whole story.

1.5 Technical Approaches

1.5.1 Changes in Lexical Similarity

Some of the first successful approaches to segmentation focus on changes in lexical
distribution, and this still forms the core of many current algorithms. The essential insight
is that topic shifts tend to be marked by a change in the vocabulary used, which can be
detected by looking for minima in some lexical cohesion metric.

TextTiling (Hearst 1997)

TextTiling (Hearst 1997; Hearst and Plaunt 1993; Hearst 1994) was one of the early
algorithms to emerge from the TDT Broadcast News effort, and still forms the baseline for
many recent improvements; while designed for text documents, it has since been successfully
applied to spoken data. The discourse is tokenized, stemmed and divided into windows of a
fixed width. Each window is represented by a lexical frequency vector: one row per distinct
word type, whose value is the raw frequency of that word type in the window. Moving across
the discourse, the lexical similarity is then calculated for each pair of adjacent windows,
using the cosine distance between their lexical frequency vectors. The resulting curve is then
smoothed, and local minima are found by calculating a depth score for each point based on
its relative depth below its nearest peaks on either side. Points with the highest depth scores
(i.e. the deepest troughs in the smoothed similarity curve) are then taken as the hypothesized
boundaries – see Figure 1.5.

Other similarity metrics can be used within the same overall approach: Hearst also
proposes an alternative which uses a measure of introduction of new vocabulary within each
block (new topics may be expected to introduce new terms); and Reynar (1999) uses the
overlap between the two sets of bigrams rather than just unigrams. Whichever exact variant is
used, one advantage of this approach is that it is essentially unsupervised – although various
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Figure 1.5 True segment boundaries vs. minima in TextTiling’s lexical similarity metric. From
(Hearst and Plaunt 1993). c©1993 ACM, Inc. Included here by permission.

parameters do need to be set suitably, such as the window width and the cut-off at which
depth scores cause boundaries to be hypothesized.

Latent Concept Modelling

Of course, the success of this approach must depend on the suitability of the similarity metric
chosen. Using raw lexical frequency vectors as the basis for similarity can cause problems,
due to their sparseness and the fact that they necessarily treat words independently, ignoring
the real dependencies between related terms. One way to combat this is to project the lexical
vectors into some latent concept space using methods such as Latent Semantic Analysis
(LSA, Landauer et al. 1998).

More details of LSA and related approaches are given in the next chapter, but the main
idea is to represent topics using fewer dimensions: characterizing a segment not by counts of
each distinct word type, but by weights over a smaller set of latent variables (which can be
seen as semantic concepts). The simple lexical frequency approach as used by TextTiling in
its original form represents any segment of text (window, topic, document) as a vector x of
word frequencies, with one entry for each term in the vocabulary W of size w:

x = (f1, f2, . . . , fw)

Instead, LSA generates a set of latent concepts by matrix decomposition. Given a set of
documents (or topic segments) D of size d, we can build a lexical frequency matrix X where
each column is the word frequency vector for a document:

X = (x1;x2; . . . ;xd)
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Singular value decomposition allows us to rewrite X as the product of three matrices: U and
V are orthogonal matrices of eigenvectors (of dimension w × w and d× d respectively), and
Σ a diagonal matrix representing the corresponding eigenvalues. The eigenvectors of V can
now be viewed as the latent concepts:

X = UΣV ∗

This decomposition is exact; but by limiting Σ to the largest k values, we can closely
approximate the original X while reducing the effective number of dimensions to k. We can
now project a w-dimensional word frequency vector x into the k-dimensional latent concept
space using (appropriately truncated) U and Σ:

z = Σ−1U∗x

The vector z is now a representation of a text segment as a set of weights over the k latent
concepts. Similarity (or distance) between segments or windows can now be calculated using
an appropriate vector distance measure (such as the cosine distance) between these z vectors.
This approach does require a dataset on which to learn the concept vectors; but gives a
more general, less sparse, and lower-dimensional representation which allows dependencies
between words to be expressed (as each concept vector may relate several distinct words).

Olney and Cai (2005) use LSA to provide a similarity metric within a TextTiling-like
approach, and show that it can give more accurate segmentation on dialogue data. Their
method uses LSA-based distance to compare each utterance with the windows on either side,
not only in terms of its similarity (in their terms, its relevance to the surrounding topic), but
also its difference (its informativity, or the amount of new information it may be providing)
– and hypothesize boundaries on the basis of a combination of these factors, learnt using a
regression model. Other latent concept modelling approaches are also possible – for example,
Sun et al. (2008) use Latent Dirichlet Allocation (see below) to provide the basis for their
similarity metric.

LCSeg (Galley et al. 2003)

Another variation of the basic lexical cohesion approach that has been particularly influential
in dialogue segmentation is LCSeg (Galley et al. 2003). Here, the similarity metric uses
the presence of lexical chains (Morris and Hirst 1991) – implemented here as simple term
repetitions – rather than just the presence of words; the insight being that these chains will
start and end at topic shifts. Chains are identified for all repeated terms in the text, and
weighted according to their term frequency (more frequent terms being weighted higher) and
the chain length (shorter chains being weighted higher). The cosine distance between each
pair of windows’ lexical chain vectors is then used as the key metric, and again the sharpest
local minima are taken as the hypothesized boundaries; this simple but robust method has
shown good performance on difficult data (multi-party meetings).

Supervised Classification (Georgescul et al. 2006b)

If suitable training data is available, the same insight can be given higher accuracy by the
use of supervised classification, and Galley et al. (2003) showed that this could improve their
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algorithm’s performance. Georgescul et al. (2006b) went one step further by characterizing
each potential boundary point in the discourse (each utterance boundary) not by a single
lexical cohesion score comparing the windows on either side, but an array of lexical similarity
features, one for each word in the discourse vocabulary. This results in a very sparse, high-
dimensional array of features, but one which contains a large amount of information. By using
support vector machines, which can operate with high dimensional feature spaces (Vapnik
1995), a classifier model can then be learnt which predicts boundaries with high accuracy,
outperforming (Galley et al. 2003)’s approach on meeting transcripts. Further performance
improvements are also possible by incorporating non-lexical features and latent concept
representations – see below. Being a supervised method, though, it does require annotated
training data.

1.5.2 Similarity-based Clustering

Alternatively, we can take another viewpoint on the same basic insight: rather than looking
for areas of low cohesion (the boundaries), we can look for areas of high cohesion (the topic
segments). Clustering together neighbouring areas which are similar to each other leaves us
with a segmentation of the discourse. This can be approached using agglomerative clustering
(growing clusters outwards from peaks in similarity (Yaari 1997)), but divisive clustering has
proved more effective.

Dot-Plotting (Reynar 1994)

Reynar (1994) uses the technique of dot-plotting, originally from (Church 1993), to segment
text: the discourse is plotted as a two-dimensional matrix with its words (in linear order) along
both axes, and a non-zero entry (a dot) wherever words match (see Figure 1.6). The diagonal
is, of course, entirely non-zero, as each word matches itself; but squares can also be seen,
corresponding to topics, in areas with more frequent matching between near-neighbours. The
boundaries between these squares are the topic boundaries, and the best set of boundaries
is that which maximizes the dot density within the squares it delineates, and minimizes
the density outside those squares (i.e. finds topics which are maximally similar internally,
and maximally different from other topics). This can be performed essentially unsupervised
and without any training data, although it needs a search algorithm and some criterion for
finishing; Reynar (1994) uses a best-first search algorithm which minimizes the outside
density and assumes a known number of boundaries.

This method has been extended and improved since: Choi (2000)’s C99 algorithm, for
example, works on sentences rather than words, with a cosine distance sentence similarity
metric and a gradient criterion for finishing. Latent concept modelling may be applied to the
similarity metric here too: Choi et al. (2001) showed that using a Latent Semantic Analysis-
based metric could improve accuracy, although Popescu-Belis et al. (2005) found that the
benefit was small for meeting dialogue data.

Of course, these techniques were originally developed and evaluated on text, and on
corpora created artificially by concatenating distinct text documents; as Figure 1.6 shows,
speech data is less cleanly separable, with smoother transitions between topics, and
similarities between temporally distant topics. However, Malioutov and Barzilay (2006)
have shown that the approach can be successfully applied to spoken discourse with some
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Figure 1.6 Dotplotting Wall Street Journal articles (Reynar 1994) and a spoken lecture (Malioutov
and Barzilay 2006).

modification, by formulating an algorithm to find an exact solution, using a suitable similarity
metric, and limiting the long-range distance over which similarity is calculated.

1.5.3 Generative Models

Yet another way of exploiting the same phenomenon is to take a generative perspective. We
can model discourse as being generated, via a noisy channel, from some underlying sequence
of topics, each of which has its own characteristic word distribution. When the topic changes,
the vocabulary used will change; so if we can infer the most likely sequence of topics from
the observed words, we can derive the positions of the boundaries between them. Note that
this approach does not require us to measure the similarity between utterances or windows
directly – rather, the fact that neighbouring utterances within the same topic segment are
similar to each other is implicit in the fact that they have been generated from the same topic.

Hidden Markov Models (Mulbregt et al. 1999; Yamron et al. 1998)

This is, of course, comparable to the problem of speech recognition (ASR), where the task
is to infer the most likely sequence of phonemes from the observed acoustic signal. If we
can make similar assumptions about the dependencies between words and topics as ASR
does about phonemes and acoustic signals, we can apply similar models, together with their
well-researched inference techniques.

The most commonly used generative model in ASR is the hidden Markov model (HMM),
and Figure 1.7(a) shows a HMM can be used as a simple topic model. This model assumes
that the discourse is composed of a linear sequence of segments of length L words, each of
which is associated with a topic state z from which the wordsw are generated with probability
p(w|z). If we can infer the most likely sequence of topic states given the observed words, we
can produce a segmentation: if the topic zt at segment t is different from the topic zt+1 at
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Figure 1.7 From left to right: (a) a simple HMM topic model (Yamron et al. 1998); (b) the aspect
model used in (Blei and Moreno 2001); and (c) the topic mixture model used in (Purver et al. 2006).

segment t+ 1, we hypothesize a topic boundary between the segments. Performing inference
in such a model depends on two major assumptions:

1. the probability of a word being generated depends only on the current topic (the
emission probability p(w|z));

2. the probability of a topic being discussed depends only on the previous topic (the
transition probability p(zt+1|zt)).

Given estimates of the emission and transition probabilities, we can calculate the prior
probability p(Z) of any topic sequence Z, and the posterior probability p(W |Z) of Z
generating an observed word sequence W . Via Bayes’ rule, this allows us to calculate the
probability of Z given W :

p(Z|W ) = p(W |Z).p(Z)/p(W )

and maximizing this will give us the most likely topic sequence Z (given thatW , and thus the
prior probability p(W ), is fixed). While these assumptions may be good first approximations,
note that they do not entirely hold in reality: while some words may be related only to the
content of the topic at hand, many are related more to discourse or syntactic function; and
the likely sequence of topics may depend on many extra-linguistic factors. However, these
models are well understood, and efficient algorithms exist for learning and decoding (see e.g.
Jurafsky and Martin 2009; Manning and Schütze 1999, for details).

Yamron et al. (1998) were among the first to show that they can be applied to broadcast
news segmentation. First, a set of topics z with their associated language models p(w|z)
are learnt, by clustering a set of training texts using an appropriate lexical similarity metric,
and estimating the word probability distribution for each cluster (Yamron et al. used 100
topics and smoothed unigram language models). Rather than learning a full set of transition
probabilities between the given topics, this is simplified to allow for a single probability of
changing topic (as opposed to keeping the same topic when changing HMM state), which
can be estimated based only on the average length of segments in the training data. (While
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learning transition likelihoods between particular topics might be of use in some domains, in
many (such as broadcast news), topics can occur in any order.) The standard Viterbi algorithm
can then be used to infer likely topic state sequences, and hence segmentations.

As mentioned above, this kind of approach does not require a similarity metric, as pairwise
similarity measurement between sentences or windows is not required. It does require a
segmented training dataset to estimate the topic transition probability, and the topic language
models – although given the dataset these are learned unsupervised via clustering.

Latent Concept Modelling (Blei and Moreno 2001)

One drawback of this simple approach is that it treats words as being independent of
each other given a topic; as discussed with relation to lexical similarity metrics in the
previous sections, this is not a realistic assumption. With probabilistic models, the assumption
becomes more accurate as the segment size (L in the model above) increases – but this leads
to reduced accuracy as the segmentation granularity necessarily becomes coarser. As above,
one way to alleviate this is to use some form of latent concept modelling.

Blei and Moreno (2001) show that a probabilistic form of latent concept model,
Probabilistic Latent Semantic Indexing (PLSI, Hofmann 1999), can be used within a HMM
framework to give what they call an aspect HMM. PLSI is described in detail in the next
chapter, but its essential insight is to associate a document o (in this case, a topic segment)
not with one fixed topic z as above, but with a probability distribution over topics p(z|o). The
topics can therefore be seen as latent variables, as with LSA, and each topic is associated with
a probability distribution over words p(w|z). This allows us to account for segments which
may be related to multiple underlying concepts, or which are generated from a “contentful”
topic and a “syntactic” topic (see e.g. Griffiths et al. 2005).

Learning the latent topics, and the word and document distributions, is now performed
via expectation-maximization (EM, see e.g. Manning and Schütze 1999), rather than matrix
decomposition, over a training corpus of segments. Once the topics have been learnt, a HMM
can be constructed which uses the learnt latent topics z as the hidden state variables – see
Figure 1.7(b). If desired, transition probabilities between the latent topics can also be learnt
from the training set, via clustering documents according to their most likely topic. Decoding
is less straightforward, as the relevant HMM emission probabilities are no longer just p(w|z)
as before, but also p(o|z), which must be estimated during decoding using a version of EM.
However, the model can give improved performance (and Blei and Moreno (2001) show this
on radio transcripts), especially at lower values of L required for finer segment granularity.

Other forms of latent concept modelling have also been successfully used; one that has
recently become more popular is Latent Dirichlet Allocation (LDA, Blei et al. 2003). One
advantage of LDA is that it requires less supervision. While PLSI requires a segmented
training corpus to provide direct estimates of the probability distributions over topics
p(z) and documents p(o|z), LDA takes a fully Bayesian approach: it assumes a range
of possible distributions, constrained by being drawn from Dirichlet distributions. This
allows a latent topic model to be learnt entirely unsupervised, allowing the model to be
maximally relevant to the data being segmented (and less dependent on the domain of the
training set and the problems associated with human segmentation annotation). Purver et al.
(2006) use this approach in an unsupervised generative model applied to meeting dialogues,
and show performance competitive with LCSeg’s similarity-based approach. As shown in
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Figure 1.7(c), each utterance u is now associated with a distribution θ over possible latent
topics z, each of which has its own probability distribution over words φ; switching to a
new topic segment with probability c means changing the topic distribution θ. Given the
assumption that θ, φ and c are drawn from Dirichlet distributions (or a Beta distribution in
the case of c) with fixed parameters α, β and γ, inference is possible: however, exact solutions
are no longer tractable and must be approximated by (computationally intensive) sampling –
see (Blei et al. 2003; Griffiths and Steyvers 2004) and the next chapter for details.

Compact Language Modelling (Utiyama and Isahara 2001)

Another prominent variant of the generative approach that allows essentially unsupervised
segmentation is that of Utiyama and Isahara (2001)’s TextSeg. Here, the underlying
assumption is similar: that the discourse is generated from a sequence of topics, each of
which is associated with its own language model (a probability distribution over words);
and the underlying approach to segmentation also involves placing the boundaries so as to
maximize the likelihood of the data given these language models. However, in this approach
there is no attempt to learn the most likely set of topic models from a training dataset; rather,
the most compact set are chosen given the data being segmented.

This is estimated as part of the segmentation process itself: given any hypothesized
segmentation (set of boundaries) S, language models representing each segment can be
calculated from the observed words within that segment, given an appropriately smoothed
estimation procedure. The likelihood of the data can then be calculated, as above, as the
posterior probability of the words given the segmentation p(W |S), and the prior probability
of the segmentation itself p(S) – where they assume that p(S) can be calculated from the
average length of segments, either known a priori or derived from some training set. By
comparing the likelihood of the data calculated from different segmentations, the maximum-
probability segmentation can be chosen; and this can be performed via an efficient dynamic
programming algorithm.

Of course, estimating the language models only from the data being segmented (rather than
a large set of possibly clustered training documents) makes the choice of smoothing essential.
Utiyama and Isahara (2001) use a form of Laplacian smoothing; but Eisenstein and Barzilay
(2008) have since shown that another way to provide this is to generalize the approach into a
fully Bayesian version. Rather than estimating one particular smoothed language model, they
use an approach similar to LDA to marginalize over all possible language models, and show
that this improves segmentation accuracy.

As well as obviating the need for an explicit fixed similarity metric, and being amenable to
unsupervised learning, another potential advantage of generative modelling is the acquisition
of the topic models themselves: the ability to characterize the topics in terms of their
associated language models can be useful for topic summarization, classification or browsing
– see later chapters. Depending on the application, approaches which learn models in latent
concept spaces, or models which are common across training and/or test datasets, may be
more or less advantageous.
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1.5.4 Discriminative Boundary Detection

A rather different approach is to look for the characteristic features of the boundaries
themselves: the cue phrases people use to signal topic change, the prosodic features often
exhibited in speech at the beginnings and ends of topic discussions, or the introduction of
new referents.

Passonneau and Litman (1997) showed that all of the above could be useful in segmenting
spoken stories. Topic boundaries were correlated with the presence of one of a list of cue
phrases from Hirschberg and Litman (1993), such as So and Anyway, with the presence of
significant pauses or sentence-final intonation, and with the absence of noun phrases whose
referents were found in, or inferable from, the preceding utterance. These three features
seem to be complementary: by combining them in a decision tree, they could produce
segmentations with higher accuracy than using any one alone. The intonational information
used was hand-coded in that case; but Tür et al. (2001) showed that automatically extracted
pitch pattern, pause and vowel information could also be used successfully in broadcast news
segmentation (again by combining features in a decision tree classifier).

As well as general cues such as So, Anyway, different domains often have their own specific
cue phrases. In broadcast news, phrases such as Joining us, This just in and Welcome back are
strongly indicative of topic shifts. Maybury (1998) describes a system which uses these cues
in a finite-state automaton to detect and segment news story structure; and Reynar (1999)
found that by including cues together with lexical cohesion measures in a maximum entropy
model, accuracy could be increased over using lexical cohesion alone.

Of course, as the most useful set of cue phrases will vary between domains, there might
be an advantage to learning that set automatically, rather than having to define it manually.
Beeferman et al. (1999) showed how this can be done using log-linear models which combine
many possibly dependent features: by starting with many possible features and using an
iterative procedure for selecting the most informative features, a suitable subset can be
derived. If the initial features considered consist of each possible word in suitable “cue”
positions (immediately before or after a potential boundary, in the next sentence, etc.), this
will automatically produce an empirically based cue word set. For their broadcast news
dataset, they derive domain-related terms such as Joins, Live and the letters of CNN, as well
as those more specific to the content of their data such as Haiti and Clinton.

Dialogue can bring its own distinctive features to topic shifts. It is often the case that
different speakers are more active during the discussion of different topics, resulting in an
observable change in relative speaker activity at segment boundaries. The early sections of
topic discussions also tend to be more ordered, with less overlap and interruption between
speakers, as new subjects are introduced and set out. Galley et al. (2003) showed that features
based on these observations could be helpful in segmenting ICSI dialogues – see below.

1.5.5 Combined Approaches, and the State of the Art

Of course, given these different approaches with their different insights into the problem, one
way towards higher accuracy might be to combine them, and this is the direction that many
of the most effective recent systems have taken.
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Combining Lexical Cohesion and Boundary Detection

The evidence used by lexical cohesion-based approaches (whether from differential,
clustering or generative perspectives) seems entirely complementary to the evidence used
by the boundary-detection approach. Combining them therefore seems a natural step.

One way to do this is to combine the outputs of the two different approaches via some
suitable classifier. Galley et al. (2003) tried exactly this, using a decision tree classifier whose
input features were taken partly from the output of their LCSeg segmenter (Section 1.5.1) –
both the raw lexical similarity metric and the smoothed peak hypotheses – and partly from
distinctive boundary characteristics. The latter features followed Passonneau and Litman
(1997) in including a list of cue phrases, and significant pauses, although they found that
pauses should be limited to those which do not occur after a question or in the middle of one
participant’s speech. They also included measures of speech overlap (overlapping utterances
tend to be rare at the beginning of topic segments) and speaker change (in dialogue, new
topics are often associated with changes in the relative activity of the participants), calculating
the latter via the change in the distribution across speakers of the number of words uttered
immediately before and after a potential boundary. This combination resulted in a large
improvement in performance, with Pk improving from 0.32 to 0.23 on the ICSI meeting
dialogue data. Arguello and Rosé (2006) used a similar approach within a Naı̈ve Bayes
classifier, combining lexical cohesion scores with syntactic features (expressed as part-of-
speech bigrams) and information about the identity of the speaker, in two-person tutorial
dialogues.

Another way is to include distinctive boundary features directly into the main classifier,
alongside the features used to express lexical similarity. For example, in Georgescul et al.
(2006b)’s discriminative approach, lexical similarity is encoded as an array of features in
an SVM, one for each distinct word type in the vocabulary; new features related to silence,
overlaps or cue phrases can be added directly to the feature vectors, and they found that this
gave a small improvement (Georgescul et al. 2007). Within a generative approach, boundary
features can be added as new observed variables associated with a special topic-change
state; Tür et al. (2001) show how to incorporate this within Yamron et al. (1998)’s HMM
approach, Dowman et al. (2008) similarly within Purver et al. (2006)’s LDA-based model
and unsupervised learning procedure, and Eisenstein and Barzilay (2008) show how to treat
cue phrases as generated from boundary states in their language modelling approach.

There is some evidence, though, that this combined approach may become less helpful as
the desired granularity of topics becomes finer. Hsueh et al. (2006) examined segmentation
of the AMI corpus at relatively coarse- and fine-grained levels, where the coarse-grained
level often corresponded to broad changes in the activity or state of the meeting, such as
introductions or closing review, while the fine-grained level corresponded to lower-level
changes in subject matter. They found that boundary features such as cue phrases, silence
and speaker activity were only helpful for the coarse-grained segmentation.

Combining Generative and Discriminative Approaches

Benefits can also be gained by combining some of the benefits of generative approaches,
such as the ability to learn models of (latent) topics, with the accuracy of discriminative
approaches. Georgescul et al. (2008) used generative models similar to those of Blei and
Moreno (2001) and Purver et al. (2006) described above to learn topic models in latent
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concept spaces, via PLSI and LDA respectively. Using these models to provide vector-space
representations of windows of discourse, they could then apply the same discriminative SVM
classification approach as in (Georgescul et al. 2006b) to hypothesize boundaries, but with
a more compact feature representation; as they show, results on the ICSI dialogue data were
improved.

Tür et al. (2001) took a slightly different approach, seeking to exploiting the fact that
different classification approaches can lend themselves better to different phenomena, with
discriminative classifiers often dealing particularly well with prosodic feature data. Their
system combined a version of Yamron et al. (1998)’s HMM-based lexical model with a
decision tree trained on prosodic boundary features, and they experimented with two ways
of achieving this: firstly adding the HMM’s output posterior boundary probabilities into an
overall decision tree, and secondly using the prosodic decision tree to provide emission
probabilities for a boundary state in the HMM. On their broadcast news data, the latter
approach was more successful.

State of the Art Performance

Monologue
The TDT dataset allows us to compare the accuracy of various algorithms on broadcast
news data. On manual transcripts, the algorithms developed for general text (and initially
evaluated using artificial corpora) perform reasonably well, with Choi (2000)’s C99 achieving
Pk between 0.21 and Utiyama and Isahara (2001)’s TextSeg 0.14, improving to 0.18 and 0.11
respectively when given knowledge of number of boundaries (see Georgescul et al. 2006a).

The systems which were developed as part of the TDT effort achieve good performance
even on ASR output: Beeferman et al. (1999)’s supervised maximum entropy classifier
achieved Pk of 0.15, with Yamron et al. (1998)’s HMM method giving 0.16. Since then, Tür
et al. (2001)’s method including prosodic features has outperformed those with Pk = 0.14;
and Beeferman et al. (1999) claim Pk = 0.08 on a CNN portion of TDT news data.

For spoken lecture segmentation, Malioutov and Barzilay (2006)’s divisive clustering
method achieves Pk of 0.30 on manual transcripts, dropping slightly to 0.32 on ASR output.
In comparison, C99 and TextSeg give Pk values between 0.31 and 0.37 on the same data.

Dialogue
Multi-party dialogue data is trickier, of course, and accuracies on the ICSI and AMI meeting
datasets are correspondingly lower. Approaches developed for text or monologue show only
limited accuracy: Georgescul et al. (2006a) tested TextTiling, C99 and TextSeg on the ICSI
corpus, achieving Pk results ranging between 0.55 and 0.38, although this improved to 0.35
when supplying information about the expected number of segment boundaries.8

LCSeg has shown much better accuracy on ICSI, and has become a common baseline to
quote: its unsupervised version achieves Pk = 0.32, and the supervised version including
boundary features achieves Pk = 0.23. Higher unsupervised accuracies have now been
achieved by Dowman et al. (2008) and Eisenstein and Barzilay (2008)’s Bayesian generative
approaches, with Pk = 0.26; and higher supervised accuracies by Georgescul et al. (2007)
discriminative SVM classifier, with Pk = 0.21. Most dialogue segmentation efforts to date

8Note though that Banerjee and Rudnicky (2006) report more success with TextTiling on a different multi-party
dataset.
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have used manual transcripts, but some results using ASR output are now available with little,
if any, reduction in segmentation accuracy (Hsueh et al. 2006; Purver et al. 2006).

Comparing system performance on two-person dialogue is difficult, as this area has
received less attention (in terms of topic segmentation) and has little in the way of standard
datasets for comparison. However, Arguello and Rosé (2006) give results on two corpora
of tutorial dialogues: their supervised classifier, with Pk ranging between 0.10 and 0.40,
outperforms Olney and Cai (2005)’s lexical cohesion method with Pk of 0.28 to 0.49.

1.6 New Trends and Future Directions
Multi-Modality

Including multiple sources of information has become common, as explained above:
segmentation accuracy can be improved by including not only lexical information (from
lexical cohesion or language model probabilities), but also speech signal information (e.g
prosody), discourse information (cue phrases) and pragmatic information (speaker activity).
Some recent work has gone beyond this to look at information from streams other than
speech; what is available depends, of course, on the data and the application at hand.

Where video is available as well as audio, useful visual features may be extracted and
used for segmentation. The task of segmenting TV news broadcasts can be aided if scene
changes or commercial breaks can be detected: Maybury (1998) used the presence of black
screens and logos to aid segmentation, and since then methods have advanced to include face
detection and classification of scenes as reports, single or double anchorperson presentation,
outdoor shots and so on (see e.g. Avrithis et al. 2000; Chaisorn et al. 2003). In face-to-face
dialogue, video information on participant pose and gesture can be helpful. Eisenstein et al.
(2008) investigated the use of hand gesture features: as well as showing cohesion of lexical
form, coherent topic segments often show cohesion of gestural form, and they incorporate
this to help segment the discourse within a Bayesian model. Other modalities have been
used too, for example note-taking in the meeting domain. Banerjee and Rudnicky (2007)
provided meeting participants with a note-taking tool, and used their interaction with that
tool to constrain and improve the output of their TextTiling-based segmenter.

Information external to the discourse itself may also be available, in particular details
of the content of the topics likely to be discussed and/or their likely order. For meeting
dialogue, this might take the form of pre-defined agenda, something often distributed prior
to formal meetings. This can certainly aid segmentation: Banerjee and Rudnicky (2007), for
example, also exploit some knowledge of the defined agenda items and their related words.
For broadcast monologue, this might take the form of a defined running list, or a model of
how content is usually structured in a given domain. Barzilay and Lee (2004) show how to
learn such a model, without supervision, for particular text types such as earthquake and
accident reports, and use this to segment text for summarization purposes.

Topic Identification and Adaptation

In many applications, topic segmentation is a first step before topic identification: classifying
or clustering the actual topics discussed within each segment (see the following chapter).
As mentioned above, this can be one advantage of the use of generative models, as they
effectively treat segmentation and identification as joint problems: as well as producing
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a segmentation, they derive models of the topics themselves, in terms either of language
models (probability distributions over words) or the equivalent in some latent concept space
(probability distributions over word vectors). These models can then be used to characterize
the topics themselves, extract lists of descriptive keywords or word clouds to present to a
user, or cluster related topics in different broadcasts.

However, as discussed at the start of this chapter, the conception of topic – and therefore
the segmentation associated with it – can vary depending on the application at hand, the
domain and even the interests and intentions of the user. A possible solution to this problem
might be to use an adaptive approach to segmentation, allowing the segmentation (and the
associated topics) to change as indicated by the user’s behaviour or the emerging dataset. One
way to approach this is via unsupervised methods which learn underlying topic models from
entire datasets, such as the Bayesian approaches of Dowman et al. (2008) and Eisenstein and
Barzilay (2008), for example. As more data is added to a user’s personal dataset (as they
browse new news broadcasts in which they are interested, or attend new relevant business
meetings), the topic models learnt and the corresponding segmentation will change – and
this can be achieved online using suitable algorithms (AlSumait et al. 2008).

Another approach might be via supervised methods, using observed user behaviour as
direct or indirect supervision. Adaptive topic modelling has been investigated as part of TDT,
with models of document topic relevance adjusted according to user feedback as to whether a
document is on- or off-topic (see e.g. Allan et al. 2000; Lo and Gauvain 2001); but the effect
on segmentation has received less attention. However, Banerjee and Rudnicky (2007) show
how supervision can be exploited when segmenting meetings, by providing users with a note-
taking tool annotated with agenda items: by observing the times when notes are made against
particular agenda items, they can improve the accuracy of their agenda item segmenter. By
allowing users to define their own topics, a user-specific model could be learnt; one can also
imagine this being extended to other domains by observing suitable behaviour such as user
interaction with a browser.
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