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ABSTRACT | Statistical dialog systems (SDSs) are motivated by

the need for a data-driven framework that reduces the cost of

laboriously handcrafting complex dialog managers and that

provides robustness against the errors created by speech re-

cognizers operating in noisy environments. By including an

explicit Bayesian model of uncertainty and by optimizing the

policy via a reward-driven process, partially observable

Markov decision processes (POMDPs) provide such a frame-

work. However, exact model representation and optimization

is computationally intractable. Hence, the practical application

of POMDP-based systems requires efficient algorithms and

carefully constructed approximations. This review article pro-

vides an overview of the current state of the art in the devel-

opment of POMDP-based spoken dialog systems.

KEYWORDS | Belief monitoring; policy optimization; partially

observable Markov decision process (POMDP); reinforcement
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I . INTRODUCTION

Spoken dialog systems (SDSs) allow users to interact

with a wide variety of information systems using speech
as the primary, and often the only, communication

medium [1]–[3]. Traditionally, SDSs have been mostly

deployed in call center applications where the system can
reduce the need for a human operator and thereby reduce

costs. More recently, the use of speech interfaces in mo-

bile phones has become common with developments such

as Apple’s ‘‘Siri’’ and Nuance’s ‘‘Dragon Go!’’ demonstrat-

ing the value of integrating natural, conversational speech

interactions into mobile products, applications, and

services.

The principal elements of a conventional SDS are
shown in Fig. 1.1 At each turn t, a spoken language under-

standing (SLU) component converts each spoken input

into an abstract semantic representation called a user
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1Multimodal dialog is beyond the scope of this paper, but it should be
noted that the POMDP framework can be extended to handle multimodal
input and output [4]. Depending on the application, both the input and
the output may include a variety of modalities including gestures, visual
displays, haptic feedback, etc. Of course, this could result in larger state
spaces, and synchronization issues would need to be addressed.

Fig. 1. Components of a finite-state-based spoken dialog system.

At each turn the input speech is converted to an abstract

representation of the user’s intent ut , the dialog state st is updated,

and a deterministic decision rule called a policy maps the state

into an action at in response.
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determines the next system act via a decision rule at ¼
�ðstÞ, also known as a policy. The system act at is then

converted back into speech via a natural language gener-
ation (NLG) component. The state st consists of the va-

riables needed to track the progress of the dialog and

the attribute values (often called slots) that determine

the user’s requirements. In conventional systems, the po-

licy is usually defined by a flow chart with nodes repre-

senting states and actions, and arcs representing user

inputs [5], [6].

Despite steady progress over the last few decades in
speech recognition technology, the process of converting

conversational speech into words still incurs word error

rates in the range 15%–30% in many real-world operating

environments such as in public spaces and in motor cars

[7], [8]. Systems which interpret and respond to spoken

commands must therefore implement dialog strategies that

account for the unreliability of the input and provide error

checking and recovery mechanisms. As a consequence,
conventional deterministic flowchart-based systems are

expensive to build and often fragile in operation.

During the last few years, a new approach to dialog

management has emerged based on the mathematical

framework of partially observable Markov decision pro-

cesses (POMDPs2) [9]–[11]. This approach assumes that

dialog evolves as a Markov process, i.e., starting in some

initial state s0, each subsequent state is modeled by a
transition probability: pðstjst�1; at�1Þ. The state st is not

directly observable reflecting the uncertainty in the inter-

pretation of user utterances; instead, at each turn, the

system regards the output of the SLU as a noisy observation

ot of the user input with probability pðotjstÞ (see Fig. 2).

The transition and observation probability functions are

represented by a suitable stochastic model, called here the

dialog modelM. The decision as to which action to take at

each turn is determined by a second stochastic model en-
coding the policy P. As the dialog progresses, a reward is

assigned at each step designed to mirror the desired char-

acteristics of the dialog system. The dialog model M and

the policy model P can then be optimized by maximizing

the expected accumulated sum of these rewards either

online through interaction with users or offline from a

corpus of dialogs collected within a similar domain.

This POMDP-based model of dialog combines two key
ideas: belief state tracking and reinforcement learning.

These ideas are separable and have benefits on their own.

However, combining them results in a complete and well-

founded mathematical framework that offers opportunities

for further synergistic gains. The potential advantages of

this approach compared to conventional methods can be

summarized as follows.

1) The belief state provides an explicit representation
of uncertainty leading to systems that are much

more robust to speech recognition errors [11]. The

posterior probability of the belief state after each

user input is updated via Bayesian inference in a

process called belief monitoring. The design of the

belief state allows user behavior to be captured via

the model priors and the inference process is able

to exploit the full distribution of recognition hy-
potheses such as confusion networks and N-best

lists. Thus, evidence is integrated across turns

such that a single error has significantly reduced

impact, and in contrast to conventional systems,

user persistence is rewarded. If the user repeats

something often enough, the system’s belief in

what they said will increase in time as long as

the correct hypothesis appears repeatedly in the
N-best list.

2) By maintaining a belief distribution over all states,

the system is effectively pursuing all possible dia-

log paths in parallel, choosing its next action not

based on the most likely state but on the proba-

bility distribution across all states. When the user

signals a problem, the probability of the current

most likely state is reduced and the focus simply
switches to another state. Thus, there is no re-

quirement for backtracking or specific error cor-

rection dialogs. This allows powerful dialog

policies to be embedded in a simple homogenous

mapping from belief state to action.

3) The explicit representation of state and policy-

derived action allows dialog design criteria to be

incorporated by associating rewards with state–
action pairs. The sum of these rewards constitutes

an objective measure of dialog performance and

enables reinforcement learning to be used to

maximize performance both offline using dialog

corpora and online through interaction with real

users. This leads to optimal decision policies,

avoids the cost of expensive manual tuning and2Pronounced ‘‘pom dee pees.’’

Fig. 2. Components of a POMDP-based spoken dialog system. In

contrast to Fig. 1, the decoded input speech is now regarded as a noisy

observation ot of the underlying user intent ut . Since ut is hidden,

the system maintains a distribution bt over all possible dialog states

and instead of trying to estimate the hidden dialog state, the system

response is determined directly from bt . In addition, the dialog model

and policy are parameterized, and given an appropriate reward

function, they can be optimized using reinforcement learning.
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refinement procedures, and enables more com-
plex planning to be implemented than would be

feasible using only manual handcrafted designs.

Converting these potential benefits of the POMDP

approach into practice is, however, far from trivial, and

there are many issues to resolve. The state–action space of

a real-world SDS is extremely large, and its efficient re-

presentation and manipulation requires complex algo-

rithms and software. Real-time Bayesian inference is
equally challenging, and exact policy learning for POMDPs

is intractable, hence efficient approximation techniques

must be used. Finally, the most straightforward way to

optimize a POMDP-based SDS is through direct interac-

tion with users. However, real users willing to help train a

system are often not available in sufficient numbers,

hence, user simulators are required that can replicate user

behavior with sufficient accuracy to enable model param-
eters to be optimized to an acceptable level of performance

(a discussion of user simulation is given in Section V).

Despite these difficulties, considerable progress has

been made over the last five years in solving these prob-

lems, and the purpose of this paper is to review that prog-

ress and provide a coherent up-to-date view of the state of

the art in POMDP-based dialog systems.

The paper is organized as follows. First, Section II out-
lines the basic mathematics underlying POMDP-based

dialog systems in order to provide the necessary back-

ground for the subsequent sections and to establish a con-

sistent notation. Section III then explains the options

available for approximating the belief state and presents

algorithms for efficient belief monitoring. Section IV re-

views policy representation and the use of reward func-

tions and policy optimization via reinforcement learning.
Section V completes the review of core technology with an

overview of current approaches to user simulation. Having

established the basic framework, Sections VI and VII re-

view a number of recent developments in optimization of

dialog model parameters and fast adaptation. To give some

indication of the potential for real-world deployment,

Section VIII briefly describes some existing prototype sys-

tems and applications that incorporate POMDP-based dia-
log management, with some example evaluations given in

Section IX. Finally, for completeness, Section X provides a

historical perspective and Section XI concludes.

II . PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES

Formally, a POMDP is defined as a tuple ðS;A;T;R;O;
Z; �; b0Þ where S is a set of states with s 2 S; A is a set of

actions with a 2 A; T defines a transition probability

Pðstjst�1; at�1Þ; R defines the expected (immediate, real-

valued) reward rðst; atÞ 2 <; O is a set of observations with

o 2 O; Z defines an observation probability Pðotjst; at�1Þ;
� is a geometric discount factor 0 � � � 1; and b0 is an

initial belief state, defined below.

The POMDP operates as follows. At each time step, the

world is in some unobserved state st. Since st is not known

exactly, a distribution over possible states called a belief
state bt is maintained where btðstÞ indicates the probability

of being in a particular state st. Based on bt, the machine

selects an action at, receives a reward rt, and transitions to

(unobserved) state stþ1, where stþ1 depends only on st and

at. The machine then receives an observation otþ1, which is
dependent on stþ1 and at. This process is represented

graphically as an influence diagram in Fig. 3.

Given an existing belief state bt, the last system action

at, and a new observation otþ1, the new updated belief state

btþ1 is given by [12]

btþ1ðstþ1Þ ¼ �Pðotþ1jstþ1; atÞ
X

st

Pðstþ1jst; atÞbtðstÞ (1)

where � ¼ 1=Pðotþ1jbt; atÞ is a normalization constant and

where b0 is the initial belief state distribution before the

first system action has been taken.3

The system action is determined by a policy �, which

can be represented in a variety of ways. It is most com-

monly either a deterministic mapping from belief states to

actions �ðbÞ 2 A or stochastically via a distribution over
actions �ðajbÞ 2 ½0; 1� where �ðajbÞ is the probability of

taking action a in belief state b, and
P

a �ðajbÞ ¼ 1 8 b.

For convenience, both types of policy will use the same

symbol �, with the presence of the action in the notation

determining whether the policy is deterministic or sto-

chastic. Note, however, that other definitions are possible

such as finite state controllers [13], or mappings from

Fig. 3. A POMDP, shown as an influence diagram. In this paper,

clear circles are hidden random variables, shaded circles are

observed random variables, squares are system actions, diamonds

are real-valued rewards, and arrows show causality.

3The notation for belief states can be confusing: bt represents a
probability distribution over the hidden state space S at time t; btðsÞ
denotes the probability of a specific state s given belief state bt; and btþ1ðsÞ
represents the probability of state s given a new updated belief state btþ1,
which, in general, will be different from btðsÞ.
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finite-length sequences of observations to actions (cf. pre-
dictive state representations [14]).

The discounted sum of rewards expected by starting in

belief state bt and following policy � is given by the value
function V�ðbtÞ ¼ E½rt þ �rtþ1 þ �2rtþ2 þ . . .�, which can

be expressed recursively for a deterministic policy as

V�ðbtÞ ¼ r bt; �ðbtÞð Þ þ �
X
otþ1

P otþ1jbt; �ðbtÞð ÞV�ðbtþ1Þ (2)

and by

V�ðbtÞ ¼
X

at

�ðatjbtÞ
(

rðbt; atÞ

þ �
X
otþ1

Pðotþ1jbt; atÞV�ðbtþ1Þ
)

(3)

for a stochastic policy. A related quantity is the Q-function

Q�ðb; aÞ, which provides the expected discounted sum of

rewards if a specific action a is taken given belief state b,

and then policy � is followed. Clearly, for a deterministic

policy, V�ðbÞ ¼ Q�ðb; �ðbÞÞ and for a stochastic policy

V�ðbÞ ¼
X

a

�ðajbÞQ�ðb; aÞ: (4)

An optimal policy �� is one that maximizes V� to yield V�

V�ðbtÞ¼max
at

rðbt; atÞþ�
X
otþ1

Pðotþ1jbt; atÞV�ðbtþ1Þ
" #

(5)

which is the Bellman optimality equation for POMDPs
[15]. In the POMDP literature, finding a policy � that

satisfies (5) is often called ‘‘solving’’ or ‘‘optimizing’’ the

POMDP. For simple tasks, both exact [12] and approxi-

mate [16]–[20] solution methods have been developed.

However, standard POMDP methods do not scale to the

complexity needed to represent a real-world dialog system.

Even in a moderately sized system, the number of states,

actions, and observations can each easily be more than
1010. Even enumerating Pðstþ1jst; atÞ is intractable, and as a

result computing (1) directly and applying direct solution

methods to (5) is very difficult. Instead, approximations

have been developed that exploit domain-specific proper-

ties of the spoken dialog task in order to provide compact

representations for both the model and the policy, and to

allow tractable algorithms for performing belief monitor-

ing and policy optimization. These are described in the
following sections.

III . BELIEF STATE REPRESENTATION
AND MONITORING

This section reviews the possible approaches to represent-

ing the dialog model M shown in Fig. 2. In a practical

task-oriented SDS, the state must encode three distinct

types of information: the user’s goal gt, the intent of the

most recent user utterance ut, and the dialog history ht

[11], [21]. The goal encompasses the information that must
be gleaned from the user in order to fulfil the task, the

most recent user utterance represents what was actually

said in contrast to what was recognized, and the history

tracks pertinent information relating to previous turns.

This suggests that the state should be factored into three

components

st ¼ ðgt; ut; htÞ: (6)

The resulting influence diagram is shown in Fig. 4 in

which some reasonable independence assumptions have

been introduced. Factoring the state in this way is help-
ful because it reduces the dimensions of the state transi-

tion matrix and it reduces the number of conditional

dependencies.

Plugging the factorization in (6) into the belief update

(1) and simplifying according to the independence

Fig. 4. Influence diagram representation of a factored state

SDS–POMDP. The hidden dialog state st is factored into a user goal gt ,

the user’s last input ut , and key elements of the dialog history ht .

This allows conditional independence assumptions to be introduced

both within the state and from one time slice to the next. No arc is

required from actions to observations since the recognized speech ot

is conditionally independent given the user’s actual utterance ut .
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assumptions shown in Fig. 4 gives the basic belief update
equation for a statistical SDS

btþ1ðgtþ1; utþ1; htþ1Þ ¼�Pðotþ1jutþ1Þ (a)

� Pðutþ1jgtþ1; atÞ (b)

�
X

gt

Pðgtþ1jgt; atÞ (c)

�
X

ht

Pðhtþ1jgtþ1; utþ1; ht; atÞ (d)

� btðgt; htÞ: (7)

The terms on the right-hand side in (7) reflect each of

the factors determining the belief state and the underlying

models which are, therefore, needed to represent these

factors in a practical system.

a) The observation model represents the probability

of an observation o given the user’s actual utter-

ance u. This encapsulates the effects of speech

understanding errors.
b) The user model represents the likelihood that the

user would utter u given the previous system

output and the new system state. This encapsu-

lates user behavior.

c) The goal transition model represents the likeli-

hood that the user goal has changed.

d) The history model represents the system’s memory

of the dialog to date.
There are, of course, possible variations to this factoriza-

tion. For example, user affect may also be factorized out

[22] but most current approaches fit broadly within this

model.

While the factorization in (6) does significantly reduce

the POMDP model complexity, it is still too complex to

support tractable real-world systems. Further approxi-

mation is, therefore, necessary, for which two main ap-
proaches have emerged:

1) the N-best approach including pruning and recom-

bination strategies [23]–[26];

2) the factored Bayesian network approach [22],

[27], [28].

These two approaches are discussed below.

A. N-Best Approaches
In N-best approaches, the belief state is approximated

by a list of the most likely states (or groups of states) with

their probabilities. This means that dialog states corre-
sponding to the most likely interpretations of the user’s

intent are well modeled, with other states given low pro-

bability mass. One example of this approach is the hidden

information state (HIS) model [23], which groups similar

user goals into equivalence classes called partitions on the

assumption that all of the goals in the same partition are

equally probable. The partitions are tree structured to take

account of the dependencies defined in the domain on-
tology, and they are built using slot–value pairs from the

N-best list of recognition hypotheses and the last system

output. The combination of a partition, a user act from the

N-best list, and the associated dialog history forms a

hypothesis. A probability distribution over the most likely

hypotheses is maintained during the dialog, and this con-

stitutes the belief space. Belief monitoring then requires

only the hypothesis beliefs to be updated and, since there
are relatively few hypotheses, this can easily be done in

real time. The update equation for the HIS model follows

directly from (7) with the further simplification that the

user goal is normally assumed to be constant [23]

btþ1ðptþ1; utþ1; htþ1Þ ¼ �Pðotþ1jutþ1ÞPðutþ1jptþ1; atÞ
�
X

ht

Pðhtþ1jptþ1; utþ1; ht; atÞ

� Pðptþ1jptÞbðhtÞ (8)

where pt is a partition and the term Pðptþ1jptÞ represents

the probability that a partition pt will be split into two

subpartitions pt ! fptþ1; pt � ptþ1g. A similar approach is
taken in [24], except that both slot values and their com-

plements are used to build a frame. This is particularly

useful in negotiation-type dialogs, where the users can

change their mind and ask for an alternative. It also ena-

bles a form of first-order logic to be expressed and under-

stood by the system. However, the domain ontology is not

used when building frames losing the benefits of modeling

conditional dependence. In [26], it is shown that comple-
ments can also be incorporated into the HIS approach

giving the advantage of modeling both conditional depen-

dence and first-order logic.

The N-best approach can also be viewed as running N
conventional dialog systems in parallel such that each pa-

rallel thread tracks a different interpretation of what the

user said. In this case, a list of hypothesized dialog states is

maintained; associated probabilities can be assigned using
a mixture distribution [29], a discriminative classifier [30],

or with a heuristic scoring function [31]. Although it lacks

the compactness of the HIS representation, this approach

provides a simple upgrade path for conventional determi-

nistic dialog systems.

Both partition-based and frame-based approaches have

the inherent problem that the number of partitions

(frames) grows exponentially with dialog length. Hence,
in practical implementations, some form of pruning is re-

quired. In [25], partitions are organized into a tree, and

then low probability partitions are recombined with their

parent, thus limiting the number of partitions. This has the

problem, however, that high probability slots can be

pruned if they are distributed over many partitions. A more

effective solution is proposed in [26], where at every dialog
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turn a marginal probability distribution is calculated for
each slot. Then, low probability slot–value pairs are

pruned by recombining all the partitions that have that

slot–value pair with the partitions that have the comple-

ment of that slot–value pair. In this way, the method

supports dialogs of arbitrary length.

B. Factored Approaches
The alternative to maintaining an N-best list of user

goals is to factor the user goal into concepts that can be

spoken about by the system. This is illustrated in Fig. 5,

which shows an example from a tourist information system
in which entities have a type such as {hotel, restaurant, bar},

the kind of food served and an area such as {north, south,
center, etc.} [28]. The food and area slots are dependent

only on the type, even though, in practice, there are many

more restaurants in the center of town. This illustrates the

differing tradeoffs between the N-best approach, which

can model all dependencies but with an incomplete distri-

bution, and the slot-level factoring approach, which can
handle only a limited number of dependencies but can

model the complete distribution.

Once the Bayesian network for the slot-level factoring

has been compiled, standard belief propagation algorithms

can be used to update the beliefs [32]. In the case of con-

cepts that are conditionally independent, the belief propa-

gation algorithm will give exact updates of the marginal

distributions for each of the concepts, as used in [22].
Limited dependencies can also be modeled, although this

requires approximate methods such as loopy belief propa-
gation. The Bayesian update of dialog state (BUDS) model

is one example that is based on this approach [27]; particle

filters can also be used [33].

It is interesting to note that N-best approximations can

also be used within a factored model. Instead of the fac-

tored model updating beliefs for all the possible values of a

node in the network, only an N-best list of values is updated.

Partitions of the states in a node are also possible [34]. This
combines many of the benefits of the two approaches.

IV. POLICY REPRESENTATION AND
REINFORCEMENT LEARNING

This section presents the representation and estimation of

the policy model P, shown in Fig. 2, which provides a

mapping between the belief state b and the appropriate
system action a. The objective is to find an optimal policy

�� that maximizes the expected sum of discounted rewards

at the end of the dialog.

The belief space of a POMDP spans an ðjSj � 1Þ-
dimensional simplex where jSj is the cardinality of the

underlying hidden state space. Points in belief space that

are close to each other will share the same action, and

hence, a nonparametric policy must encode first a parti-
tioning of belief space such that all points within any par-

tition map to the same action, and second, it must encode

the optimal action to take for each partition. While exact

representations of a POMDP dialog policy are possible, for

example, by compressing belief space [35] or dynamically

reassigning states [36], exact representations are all intrac-

table for real-world problems such as spoken dialog sys-

tems where both state and action spaces will typically be
very large. Thus, a compact representation of the policy is

essential.

Fortunately, there are some mitigating constraints that

can be exploited. First, only a relatively small part of belief

space will actually be visited during any normal dialog, and

second, the range of plausible actions at any specific point

in belief space will often be restricted. This introduces the

notion of a compressed feature space called summary space
in which both states and actions are simplified in order to

allow tractable policy representation and optimization

[37], [38]. Summary space can, therefore, be regarded as a

subspace of the full master space whereby belief tracking is

performed in master space, and decision taking and policy

optimization take place in summary space. The runtime

operation of a master summary-space POMDP is, there-

fore, as follows. After belief updating, the belief state b in
master space is mapped to a vector of features b̂ and a

corresponding set of candidate actions fâg. The policy is

then used to select the best action to take b̂! â from the

set of candidate actions and a second heuristic is used to

map â back into a full action a in master space.

Summary-space mapping requires two components: a

mechanism to select candidate actions in master space,

Fig. 5. Influence diagram for a single time slice of a BUDS POMDP

in which the state is further factored into concept or slot-level

components. In this simplified example taken from the tourist

information domain, three slot-level values are required: the type of

venue, the kind of food served, and the area in which the venue is

located. Note that food and area are conditionally independent given

the type of venue and last action. (Although not shown explicitly to

avoid cluttering the diagram, all slot-level nodes are dependent

on the last system action.)

Young et al. : POMDP-Based Statistical Spoken Dialog Systems: A Review

Vol. 101, No. 5, May 2013 | Proceedings of the IEEE 1165



and functions to extract features from the belief state and
candidate actions. The simplest method for selecting can-

didate actions is to include all types of dialog acts (e.g.,

greet, ask, confirm, inform, etc.) applicable to any concept or

slot (e.g., venue type, food type, star rating, etc.), populating

slot values by highest belief [28], [37]. This approach has

the benefit of being entirely automatic; however, it still

admits some spurious candidate actions, such as taking a

greeting action in the middle of a dialog, or attempting to
confirm a value before the system has asked about it. An

alternative method for selecting candidate actions is to

construct a handcrafted partial program [39], [40] or a

Markov logic network [41]. These approaches have the

benefit of allowing arbitrary human knowledge about

dialog flow to be incorporated, and to explicitly set busi-

ness rules, for example, requiring that certain actions be

taken before others such as successfully collecting a pass-
word before allowing funds to be transferred. It has also

been shown that constraining the set of candidate actions

results in faster convergence to an optimal policy, since

many spurious actions are pruned away [40]. However,

rules require human effort to encode, and there is a risk

that optimal candidate actions may be inadvertently ex-

cluded. Intermediate methods are possible as well, such as

allowing every dialog act to be a candidate action, but
constraining the slots that the act operates on using hand-

crafted heuristics [42].

The second component required for summary-space

mapping are functions to extract features from the belief

state and each candidate action. For actions, typically one

binary feature is created for each dialog act, or for each

valid dialog act/slot pair, such as confirm(food). This

generally results in a 20–30 dimensional vector of action
features, where each dimension represents a unique

(summary) action. State features are typically heteroge-

neous, consisting of real-valued quantities, binary values,

categorical values, etc. Typical state features include: the

belief in the top N user goals or partitions; the top

marginal belief in each slot; properties of the top user goal

or partition, such as the number of matching database

entries; an indication of which system actions are
available; properties of the dialog history, such as whether

the top user goal/partition has been confirmed; the most

likely previous user action; or combinations of these

features [28], [37], [40], [42], [43]. A typical system has

5–25 features in total which are usually hand selected,

although some work has been done to automate feature

selection [43], [44]. State features need not be limited to

information in the belief state: features may also draw
on information being tracked outside the belief state, such

as information in databases, information from past dialogs,

usage context, etc.

Given a specific summary space, a policy may be re-

presented as an explicit deterministic mapping: �ðb̂Þ ! â
or as a conditional probability distribution �ðb̂; âÞ ¼ pðâjb̂Þ
where the required action is selected by sampling the dis-

tribution. Note that the policy is now a function of the
summary belief state and actions, instead of the original

belief state and actions. One can think of this either as a

new function that gives an approximation to the value in

the original space, or as a policy over a new Markov deci-

sion process, where the states and actions are now the

summary states and actions. The same is true of the

Q-function, and both these functions will now be used in

this context.
In the case of deterministic mappings, the dominant

approach is to find an optimal Q-function (see Section II)

Q� that maximizes maxâfQðb̂; âÞg for all b̂, then

��ðb̂Þ ¼ arg max
â

Q�ðb̂; âÞ
� �

: (9)

The Q-function itself can either be parametric or nonpa-

rametric in which case the belief state is quantized into a

codebook fb̂ig and Q�ðb̂i; âÞ can be computed for each
discrete codebook entry b̂i.

To illustrate some of these options, five different

methods of policy optimization are now presented: plan-

ning under uncertainty, value iteration, Monte Carlo opti-

mization, least squares policy iteration (LSPI), and natural

actor–critic. These methods have been selected because

all have been applied to end-to-end working dialog

systems. Some further optimization methods will be
covered later in Section VII on fast adaptation. While

representative, these five methods are not exhaustive, for

example, Q-learning [45]–[48] and SARSA [49]–[51] are

also popular techniques.

A. Planning Under Uncertainty
One approach to policy optimization is to view action

selection in summary space as planning under uncertainty.

In this approach, b̂ is viewed not as a vector of arbitrary

features, but rather as a distribution over a hidden state

variable in summary space ŝ. This hidden summary state

might express, for example, whether the top hypothesis in
master space is correct. In addition, it is assumed observa-

tions o (in master space) can be mapped to a compact

observation in summary space ô.

With these definitions in place, dialogs can be col-

lected with a random policy, and three models of

summary-space dynamics can be estimated: Pðŝ0 ĵs; âÞ,
Pðô0 ĵs; âÞ, and Rðŝ; âÞ. These models define a classical

POMDP in summary space and admit standard methods for
planning under uncertainty, including different versions of

point-based value iteration [16], [18], SARSOP [52], heu-

ristic search value iteration [17], [19], and short look-

aheads [22], [53]. These methods have been applied to

dialog systems in a variety of domains, mainly in simu-

lation [22], [37], [53] [54]–[60] and also in an end-to-end

spoken dialog system [61].
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Optimization by planning under uncertainty is attrac-
tive in that optimization methods are principled, and in

some cases provide well-defined optimality bounds [17],

[19]. Another strength is that a policy can be computed

from any corpus that contains sufficient exploration of

possible dialog paths. However, it suffers from several

problems. First, the summary state ŝ and observation ô may

be difficult to define, and incorporation of extrinsic fea-

tures in b̂ may require careful engineering of the models
Pðŝ0 ĵs; âÞ and Pðô0 ĵs; âÞ. Also, while great strides have been

made in scaling optimization methods for planning under

uncertainty, supporting large state or observation spaces in

summary space can be problematic. For these reasons,

techniques have been developed which avoid defining

states and observations in summary space. These are de-

scribed in the next four sections.

B. Value Iteration
Instead of defining states and observations in summary

space, in value iteration belief states b̂ are viewed as ar-

bitrary feature vectors, and dynamics are estimated di-

rectly in this feature space. Starting again with dialogs

collected with actions taken randomly, feature vectors are

quantized into grid points fb̂ig, and then the transition
function Pðb̂jjb̂i; âÞ and the reward function Rðb̂i; âÞ are

estimated [40], [62]. Finally, standard value iteration can

be applied [63]

Qðb̂i; âÞ ¼ rðb̂i; âÞ þ �
X

j

Pðb̂jjb̂i; âÞmax
â0

Qðb̂j; â0Þ (10)

where (10) is applied repeatedly until convergence. The

clusters b̂i can either be distinct hard clusters, or soft clus-

ters where observed b̂ are shared by nearby b̂i. In this case,

the contributions of b̂i that are further away from b̂ can be

down-weighted [40], [62].

Value iteration’s main attraction is that it is simple to

apply, and it allows a policy to be estimated from any

corpus that contains sufficient exploration of possible dia-
log paths. However, it suffers from several problems. First,

it requires an estimate of transition dynamics for the entire

space Pðb̂jjb̂i; âÞ, when in practice it is only important to

estimate the portions of space traversed by the currently

optimal policy. Hence, value iteration is sample ineffi-

cient. Second, if the state features are not Markovian, i.e.,

if they do not accurately capture all relevant history for

conditioning transitions, errors will be introduced into the
policy. To address both of these issues, incremental online
learning methods have also been explored.

C. Monte Carlo Optimization
In Monte Carlo optimization, the value function Q is

estimated online, iteratively, while interacting with the

user (or more likely interacting with a user simulator; see

Section V). The current estimate of the policy guides fu-
ture action selection, so less exploration time is expended

on regions of the state space with low value. In addition,

updates are performed at the end of each dialog; hence,

whole-dialog rewards can be used to directly value the

current policy, which mitigates against the effects of any

non-Markovian dynamics in the state features.

To perform Monte Carlo optimization, the sequence of

states, actions, and rewards observed in each dialog of
length T are recorded as tuples ðb̂iðtÞ; ât; rtÞ for t ¼ 0; 1;
. . . ; T. The discounted return from each belief point b̂i

visited at time t is given by

RiðtÞ ¼
X

t���T

�ð��tÞr� : (11)

Two functions accumulate sums across all dialogs in the

corpus. First, qði; âÞ is a sum of all returns R observed

when action â was taken in grid point b̂i. Second, nði; âÞ is

a count of the instances of action â being taken in
gridpoint b̂i. Both qði; âÞ and nði; âÞ are initialized to zero

for all i and â. At the end of each dialog, these tallies are

then updated

qðiðtÞ; âÞ ¼ q iðtÞ; âð Þ þ RiðtÞ (12)

n iðtÞ; âð Þ ¼ n iðtÞ; âð Þ þ 1 (13)

for t ¼ 0; 1; . . . ; T. The Q values can then be reestimated

for all belief points i visited in the dialog and all â as

Qðb̂i; âÞ ¼ 1

nði; âÞ qði; âÞ: (14)

To converge to an optimal policy, the dialog system must

take a mixture of currently optimal and exploratory
actions

â ¼
RandomAction; with probability �

arg maxâ Qðb̂i; âÞ; with probability 1� �

(
(15)

where � controls the exploration rate. Typically, this is
large initially but reduces as learning progresses. As in

the value iteration case, the state discretization can be

done by clustering neighboring points into distinct hard
clusters [42], or soft clusters where the contribution of

a belief point b̂ to the tallies qði; âÞ and nði; âÞ is

reduced in proportion to its distance from the template

point b̂i [64].
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One important consideration for Monte Carlo opti-
mization is the number of grid points to use. If too many

grid points are used, poor performance will result due to

overfitting. Conversely, having too few grid points leads to

poor performance due to a lack of discrimination in de-

cision making. For building practical systems with five

summary-state components and ten distinct summary

actions, 750–1000 grid points have been found to be

sufficient when trained with around 100 000 simulated
dialogs [42].

As compared to value iteration, online Monte Carlo

optimization is more sample efficient and suffers less when

the transitions are non-Markovian in the state features.

However, since Monte Carlo optimization is an online

method, it cannot be performed using a previously col-

lected corpus. Like value iteration, Monte Carlo opti-

mization requires quantizing the feature space into grid
regions. As the number of features grows, this becomes a

source of intractability, which motivates the use of func-

tional approximations for the Q-function, presented next.

D. Least Squares Policy Iteration
Instead of using discrete grid points in summary

space, the next two methods utilize linear models to rep-

resent a policy. The first is LSPI [65]. LSPI assumes that

the Q-function can be represented as a weighted sum of

the features �

Qðb; âÞ � �ðb; âÞ>� (16)

where � is a (column) weight vector, �ðb; âÞ outputs

features of b that are important for making decisions

relevant to summary action â, and � and �ðb; âÞ are both of

size K. Notice that the functional mapping from master

belief space to summary belief space is now explicit in the

function �. The Q-function is thus approximated as a plane
in feature space. This may result in suboptimal policies if

the representation is not rich enough.

LSPI operates on a given, fixed dialog corpus with N þ 1

turns fbn; ân; rn; b0ng where b0n is the belief state following

bn in the corpus. LSPI begins with some policy �, and

optimizes it by iteratively estimating its value function Q,

then using Q to improve �. To estimate Q, we start with the

identity that defines the value function Q

Qðb; âÞ ¼ rþ �Q b0; �ðâÞð Þ: (17)

Substituting (16) into (17) yields a system of N equations in
K unknowns

�ðbn; âÞ>� ¼ rn þ �� b0n; � b0n
� �� �>

� (18)

for n ¼ 0 . . . N � 1. This system of equations can be solved
in a least squares sense by setting � ¼ Z�1y where [65]

Z ¼
X

n

�ðbn; ânÞ �ðbn; ânÞ � �� b0n; � b0n
� �� �� �>

(19)

y ¼
X

n

�ðbn; ânÞrn (20)

where Z is a K � K matrix and y is a K-dimensional vector.

�ðbÞ is then updated by

�ðbÞ ¼ arg max
â
�ðb; âÞ>� (21)

and reestimation of � and � then continues until both have

converged.
LSPI is attractive in that it avoids estimating grid points

in belief space in favor of a linear model for Q. It also has

no learning parameters to tune, and it can be used both

online and offline, although in the case of the latter it can

be difficult to find corpora with sufficient variability to

learn policies that are significantly different from the po-

licy used to collect the corpus.

One drawback of LSPI is that the least squares solution
step is cubic in K; hence, for practical applications of LSPI,

the feature set must be kept quite small. To assist this,

methods have been developed that perform feature selec-

tion in conjunction with LSPI [43] whereby, at each itera-

tion, a fast but approximate estimate of � is computed on

the full set of features; then only the features with the

highest weights are used in the expensive but more accu-

rate least squares solution. Experiments show this method
produces policies of similar performance but with far

fewer features [43].

E. Natural Actor–Critic Optimization
LSPI uses a linear model to estimate the value function

Q. An alternative approach is to represent the policy di-

rectly as an explicit probability distribution over actions,

parameterized by an adjustable weight vector �

�ðâjb; �Þ ¼ e���âðbÞP
â0 e���â0 ðbÞ

(22)

where �âðbÞ determines the features of the belief state b
that are important for making decisions relevant to sum-

mary action â. As above, � is specified by the system de-

signer, and � and � both have dimensionality K. � is as

before, with the � simply indexing which policy param-

eters to use [i.e., policy ��ðâjbÞ ¼ �ðâjb; �Þ].
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Representing the policy in this way has two advantages.
First, it avoids the need to choose grid points and the

problems that result. Second, since �ðâjb; �Þ is differen-

tiable with respect to �, it allows gradient ascent to be

applied for optimization. The expected cumulative reward

for a single dialog as a function of � is

Rð�Þ ¼ E
XT�1

t¼0

rðbt; âtÞj��

" #
: (23)

By rewriting the log likelihood ratio [66] and Monte Carlo

sampling from a batch of N dialogs, the gradient can be

estimated as

rRð�Þ ¼ 1

N

XN

n¼1

XTn�1

t¼0

r� log� ân
t jbn

t ; �
� �

Q bn
t ; ân

t

� �
: (24)

Although (24) provides an estimate for the plain gra-
dient, it has been shown that the natural gradient ~rRð�Þ ¼
F�1
� rRð�Þ is more effective for optimization of statistical

models where F� is the Fisher information matrix [67].

Furthermore, this natural gradient w can be found without

actually computing the Fisher matrix by using a least

square method to solve the following system of equations

Rn ¼
XTn�1

t¼0

r� log� ân
t jbn

t ; �
� �>" #

� wþ C (25)

for each dialog n ¼ 1 . . . N where Rn is the actual cumula-

tive reward earned for dialog n and C is a constant that can

be interpreted as the expected cumulative reward of the

dialog system starting from the initial state. The total ex-

pected reward can then be iteratively maximized through

gradient ascent via the parameter update �0  �þ 	w
where 	 is the step size. This is called the natural actor–

critic (NAC) algorithm [68], and has been applied to a

number of spoken dialog systems [28], [69]–[72].

NAC is particularly well suited for online operation

because the policy is represented as an explicit distribution

over actions. Unlike the �-greedy exploration used in

Monte Carlo optimization (where random actions are

chosen with a uniform distribution), the NAC optimiza-
tion process can differentiate between less promising and

more promising actions and, therefore, explores the solu-

tion space more efficiently.

As with LSPI, NAC requires the solution of a system of

linear equations (25), which is again cubic in the number

of features, so it is important to choose a compact set of

representative features.

F. Section Summary
To conclude this section, five approaches to policy re-

presentation and optimization have been presented, which

as well as being representative of current practice also

illustrate some of the principal design choices. In particu-

lar, planning under uncertainty uses the belief state as a

probability distribution directly, whereas value iteration

and Monte Carlo optimization require belief space to be

quantized, and LSPI and NAC use functional approxima-
tions based on weighted linear models of belief state fea-

tures. Monte Carlo methods and NAC (and SARSA) must

be run on-policy; planning under uncertainty, value itera-

tion, and LSPI (and Q-learning) may be run off-policy, in

batch. On-policy methods require that interactions be

obtained following the policy under optimization, whereas

off-policy methods can perform optimization with inter-

actions obtained by following a different policy. A distinc-
tion can also be made between methods like planning

under uncertainty and value iteration that perform plan-
ning on a given model of dynamics, and the other methods

described (including Q-learning and SARSA) which con-

currently learn about the environment and plan simulta-

neously. NAC also differs in that it utilizes a stochastic

policy from which actual actions can be drawn by sampling

the policy distribution. This allows a dialog system to ex-
plore alternative actions more effectively by avoiding

searching regions of the belief action space that are very

unlikely to ever be visited. Unfortunately, this gain is offset

by the generally slow learning characteristics of gradient

ascent and, in practice, the NAC algorithm requires

around 105 dialogs to optimize a policy [28]. Since the

availability of large diverse corpora and/or large numbers

of real users willing to interact with a partially trained
dialog system is normally limited, significant attention has

been paid to developing user simulators for training statis-

tical dialog systems, and this will be dealt with next.

V. USER SIMULATORS

Learning directly from corpora is problematic since the

state space that prevailed during the collection of the data

may differ from that used in policy optimization and also it

precludes the use of online interactive learning algorithms.

An alternative is to build a model of the user that can
interact directly with a dialog system and which can itself

be trained on corpora. Such a user simulator can then be

used for a wide variety of development, training, and eval-

uation purposes [73].

User simulators normally operate at the abstract level

of dialog acts. Given a sequence of user acts and system

responses, the aim is to model the distribution of plausible

user responses

pðutjat; ut�1; at�1; ut�2; . . .Þ (26)
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from which an actual user response can be sampled. As
indicated in Fig. 2, in a real system, the dialog manager

only has access to a noisy observation ot ¼ ½~u1
t ; . . . ; ~uN

t �
where ~un

t is a confused version of ut with confidence score

pð~un
t jutÞ. Thus, an error model is needed as well as a user

model. The model for pðutj . . .Þ should match the statistics

of user responses in available corpora and the error model

should match the characteristics of the speech recognition

and understanding system [74]–[77].

A. User Simulation Models
One of the earliest approaches to user simulation used

N-grams to model (26) directly [78]–[80]. The problem

with this approach is that large N is needed to capture

context and ensure that the user conveys consistent be-

havior with the result that the model is inevitably un-

dertrained. A response to this problem was to design
simulators that were essentially deterministic and goal di-

rected but which had trainable random variables wherever

there is genuine user choice [81]–[87]. These systems can

work well but, in practice, a large amount of handcrafting is

required to achieve acceptable performance.

More recent approaches to user simulation have fo-

cused on the use of dynamic Bayesian networks and hidden

Markov models paralleling the user model in the POMDP
itself [88]–[90]. They can also incorporate explicit goals by

using a Bayesian network to maintain the goal state of the

user [91]. Bayesian network approaches have the advan-

tage that they can model a rich set of conditional depen-

dencies and can be trained on data, although once again

data sparsity is a major problem. An alternative promising

technique, which avoids the sparsity issues inherent in

joint probability models uses conditional random fields
[92]. These have the advantage that they can model very

long sequences as features much more efficiently.

Ultimately, the most obvious approach to user simu-

lation will be to train a POMDP-based dialog system to

behave like a user. The simulator could then talk to the

system, with the simulator and system each refining their

individual policies to maximize reward. The principal

barrier to doing this is the lack of an appropriately detailed
reward function for the user side of the dialog. A solution

to this might be to utilize inverse reinforcement learning

to infer users’ reward functions from real human–human

dialogs [93], [94].

B. Error Simulation Models
User simulation was first introduced to train Markov

decision process (MDP)-based dialog systems where only
the single best output from the recognizer is used. In this

case, the error model was required primarily to simulate

automatic speech recognition errors [95]–[99]. In con-

trast, POMDP-based systems use the full distribution of

recognized hypotheses at every turn. Hence, as noted at

the start of this section, the error model for a POMDP

system must generate not just a single confusion but a set

of confusions, each with a probability consistent with the
behavior of the actual recognizer. The information content

of this distribution makes a significant difference to

performance [100]. Hence, it is important to model it

accurately.

To conclude this section, user simulation and error

modeling are important practical tools for building com-

plex statistical dialog systems for which training directly

from real users would be impractical. Pragmatically, the
approach works reasonably well but the results are highly

sensitive to the simulator [101], [102]. POMDP policy op-

timization is extremely good at exploiting inconsistent

behavior in a user simulator in order to increase its reward.

Thus, it is very easy to obtain very high performance when

training and testing on the same simulator, but then to find

actual performance in field trials is poor. One way of mi-

tigating against this is to train and test on different simu-
lators [101], [103].

VI. DIALOG MODEL
PARAMETER OPTIMIZATION

Referring back to Fig. 2, a complete POMDP-based dialog

system is characterized by two sets of parameters: the

dialog model M with parameters � , which incorporates
the user, observation, and transition probability distribu-

tions; and the policy model P with parameters �. Most

current POMDP development focuses on policy optimiza-

tion and the � parameters, whereas the dialog model and

the � parameters are frequently handcrafted. While hand-

crafting the dialog model may seem unsatisfactory, in

many cases, the dialog designer will have a strong prior on

where the parameters should be. For example, in many
applications, it may be reasonable to assume that the user

goal is constant throughout the dialog. In this case, the

probability function pðstjst�1; at�1Þ becomes a delta func-

tion. Similarly, one might reasonably assume that the true

user action cannot be a contradiction of the user goal, and

the distribution over all actions that are not contradictions

is uniform. Hence, a user action like ‘‘I want a Chinese

restaurant’’ might have zero probability for goals where the
food concept is not Chinese but uniform probability

otherwise.

In some situations, it is also possible to annotate dialog

corpora to provide complete knowledge of the states of the

system. Simple frequency counts can then be used to pro-

vide maximum-likelihood estimates of key parameters

[104]. In [105], maximum likelihood is used to estimate a

bigram model of the type of user action while using a
handcrafted model to give zero probability to user goals

that contradict a given action. In this way, simple maxi-

mum likelihood can be used to tune relatively complex

models.

However, user behavior and the noise distributions of the

speech understanding components are complex and anno-

tating dialog corpora of sufficient quantity and accuracy is
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impractical. Hence, key state variables such as the user’s goal
must be treated as hidden, and model parameters must be

estimated using inference techniques. Recent research is

starting to address this problem of learning the dialog model

parameters � directly from dialog corpora using a variety of

approaches.

A. Expectation Maximization
If the hidden state cannot be annotated, then one must

turn to an approximate inference algorithm. Since the

POMDP has an input–output hidden Markov model struc-

ture, the expectation–maximization (EM) algorithm is a

sensible first choice. EM operates by using a fixed set of

parameters to estimate marginal distributions of the hid-

den parameters in its first step. It then uses these margi-

nals to reestimate the parameters of the model and repeats.

EM has been used to learn the user model for a small
spoken dialog system with seven states [106]. However,

this approach does not scale well when the number of

states is significantly increased. The main problem is that

marginals must be computed for every possible state,

which becomes impractical for many applications. Syed

and Williams [107] have shown how EM can be used to

build models of the user behavior, although the method

requires the user’s goal in the dialog to remain constant.
This is an unsuitable assumption for many real-world dia-

logs. Nevertheless, approaches based on EM have the

major benefit that they do not require annotations of the

dialog state.

B. Expectation Propagation
Another algorithm that has been applied to learning the

parameters of a spoken dialog system is expectation propa-
gation [108], [109]. This algorithm operates directly on a

factored Bayesian network and simply extends the loopy

belief propagation algorithm to handle continuous state

spaces. This allows the parameters to be updated during

the propagation step and means that all the conditional

independence assumptions are used in simplifying the

update. This approach has been used to learn the goal

evolution parameters of a relatively large tourist informa-
tion system [110]. The main advantage of this approach is

that it requires no annotations of either the true semantics

or the dialog state. This means that parameters can be

improved with each dialog without any extra supervision.

C. Reinforcement Learning
All of the above approaches are motivated by the ob-

jective of designing a dialog model that captures the es-
sential elements of the user’s behavior. An alternative

would be to view the dialog model as just another set of

parameters that influence the total reward earned by the

system. Hence, the task of the parameter optimization

changes from an inference problem to a reinforcement

learning task. Although this means that the parameters are

no longer probabilities in the usual sense, the final aim of

the system is to maximize its performance and this ap-
proach directly optimizes this metric.

One algorithm that has been proposed for this pur-

pose is an extension of the NAC algorithm discussed in

Section IV called by analogy natural belief critic (NBC)

[111]. This algorithm replaces the parameters of the policy

that would usually be learned, with the parameters of the

user model, denoted � . This is not entirely straightforward

because the reward is not differentiable with respect to � .
However, if the � parameters are fitted with Dirichlet

priors, then the priors are differentiable. Hence, the priors

can be optimized using natural gradient ascent, and the

required � parameters can then be obtained by sampling

the optimized priors. The NBC algorithm can be further

extended to optimize both policy and user model param-

eters at the same time. Experiments have shown that poli-

cies optimized by this joint natural actor and belief critic
(NABC) algorithm outperform policies trained solely with

the NAC algorithm [70].

VII. FAST TRAINING AND
USER ADAPTATION

As noted in Section IV, policy optimization for a real-world

spoken dialog system takes an order of Oð105Þ training
dialogs. This is too large for the policy to be trained in

direct interaction with human users and, hence, as dis-

cussed in Section V, policy optimization currently relies on

interaction with user simulators. These simulators require

a high level of sophistication and are not trivial to build.

Moreover, the policies trained with simulated users are

biased toward the particular behavior that these models

incorporate. It is desirable, therefore, to speed up policy
optimization so that policies can be trained with or

adapted to real users.

A second issue with standard policy optimization tech-

niques is that they do not provide a measure of certainty in

the estimates. As dialog systems become more complex it

will be important to convey to the user the system’s confi-

dence level. When the system is uncertain, then it needs to

signal to the user that it is uncertain. More pragmatically,
knowing the level of uncertainty in the various regions of

belief action space will assist learning algorithms to ex-

plore parts of the space it is uncertain about instead of

exploring randomly.

A final issue concerns the inherent approximation in-

troduced by parameterizing the policy. As described in

Section IV, typically a set of feature functions are chosen

and then parameters are optimized with respect to the
chosen features. To be effective, the feature functions

must be carefully handcrafted, and even then the result

will be suboptimal.

One method that has been recently applied to spoken

dialog systems to address these issues is Gaussian-process-

based reinforcement learning, which allows a policy model

P to be defined and optimized in a nonparametric
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manner.4 A Gaussian process (GP) is a generative model of
Bayesian inference that can be used for function regression

[112]. A GP is specified by a mean and a kernel function,

which defines prior function correlations and is crucial for

obtaining good estimates with just a few observations.

As with the value iteration and Monte Carlo methods

described in Section IV, the GP approach represents the

policy via the Q-function [see (9)]. However, unlike those

methods, it does not require discretization of belief space.
Furthermore, given a suitable kernel, it can operate both in

summary belief space and in the full master belief space.5

Current research on using GP for dialog systems is

focused on the GP–SARSA algorithm [113], which models

the Q-function as a zero mean Gaussian process

Qðb; aÞ 	 GP 0; k ðb; aÞ; ðb; aÞð Þð Þ (27)

where kððb; aÞ; ðb; aÞÞ is a kernel representing the correla-

tions in belief action space ðb; aÞ.
The posterior of the Gaussian process provides not only

the mean estimate of the Q-function but also the variance,
which gives an estimate of the uncertainty in the approxi-

mation. In online algorithms, this estimate of the uncer-

tainly can be used for more efficient exploration, either via

an active learning model or by defining a stochastic policy

model, both of which have been shown to speed up the

process of learning [114].

The GP–SARSA algorithm can be used to estimate the

Q-function for real-world problems [115], [114]. It has been
shown to optimize dialog policies faster than a standard

reinforcement learning algorithm [116], and it has been

used to successfully train a dialog policy in direct interac-

tion with human users [117].

GP–SARSA is an online on-policy algorithm in that it

learns by interaction, taking actions according to the same

policy that it is optimizing. While on-policy methods gua-

rantee that the overall reward acquired during the opti-
mization process is maximized, off-policy methods

guarantee that a particular policy behavior is followed

during the process of optimization. Off-policy sample-

efficient methods have been explored in the context of

parametric optimization using the framework of Kalman

temporal differences (KTD) [118]. Online off-policy

learning typically uses a form of Q-learning that exploits

the Bellman equation

Qðb; aÞ¼E rtþ1 þ �max
a02A

Qðbtþ1; a0Þjbt ¼ b; at¼a

� �
(28)

whose maximization requires a nonlinear parametrization
of the Q-function. The KTD-Q algorithm is a sample effi-

cient algorithm that assumes a nonlinear parametrization

of the Q-function and optimizes the parameters using

Kalman filtering [119]. Similar to GP–SARSA, this algo-

rithm also provides a measure of the uncertainty of the

approximation that can be used for more efficient policy

optimization [119]. This algorithm has been successfully

applied to dialog policy optimization and shown to perform
significantly faster than standard off-policy methods such

as LSPI [44], [120].

VIII . SYSTEMS AND APPLICATIONS

The preceding sections of this review provide an outline of

the core components of a statistical dialog system. It will

be apparent that these systems are complex and the tech-
niques are being continually refined. While commercial

deployment is probably still some way off, several working

systems have been built in a number of application areas.

This section provides some specific examples of dialog

systems and applications that have been implemented

within the POMDP framework.

Most of the systems implemented to date have been

information inquiry applications. These include: voice
dialing [121], tourist information [28], [42], appointment

scheduling [122], and car navigation [24]. Command-and-

control applications have also been demonstrated, such as

control of devices and services in the home via a multi-

modal interface [123]. Another class of application is the

troubleshooting domain, which is an interesting example

of planning for uncertainty where the observation space of

the POMDP can be extended to include nonspeech varia-
bles such as the state of a modem, and the actions can

include the invocation of test signals in addition to verbal

responses [124].

POMDP systems have also been demonstrated in the

‘‘Let’s Go’’ challenge run by Carnegie Mellon University

(CMU, Pittsburgh, PA), which involves providing live out-

of-hours bus information to residents in the Pittsburgh

area [34], [125]. This application must deal with casual
callers using a variety of mobile phones, often in noisy

environments. When success rates were plotted as a func-

tion of word error rate, the POMDP-based systems consis-

tently outperformed the conventional baseline system [8].

IX. EVALUATION AND PERFORMANCE

While methods for evaluation of most data-driven tasks in
speech and natural language processing are well estab-

lished [126], evaluating a spoken dialog system requires

interaction with users and is, therefore, difficult [127].

Moreover, a spoken dialog system consists of distinct

modules and, although there are well-defined evaluation

metrics for most of them individually, joint evaluation of

the complete system is challenging. Ultimately, the goal is

4Here nonparametric does not mean parameter free but rather that
the choice of parameters does not restrict the solution.

5Hence, in this section, master and summary space are not
distinguished.
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usually to provide user satisfaction, but this is hard to
measure and is anyway really only appropriate for real

users with real needs. Testing a system by giving paid

subjects artificial goals will inevitably create biases, and

even then it is difficult to recruit sufficient subjects to

achieve statistical significance for each contrast condition

tested. Given these problems, evaluation of SDS typically

falls into one of three testing regimes: testing with some

form of simulated user, testing with paid subjects, and
testing within a live deployed system.

There are no standardized measures for dialog manager

evaluation. However, the paradigm for spoken dialog

system evaluation (PARADISE) framework [128] suggests

the general approach of predicting user satisfaction ratings

using a corpus of dialogs annotated with user satisfaction

ratings and a set of objective measures. It defines the

dialog manager performance as a weighted function of the
dialog success and dialog-based cost measures such as

the dialog length or the number of times the system

produced a confirmation. The weights can be inferred from

the annotated corpus using regression, and this regression

can then be used as the reward function in reinforcement

learning [129], [130]. While this enables a large number of

objective measures to be considered, in practice, the dialog

success rate and the dialog length are typically the most
important predictors. Hence, most statistical dialog

systems are trained to maximize success while minimizing

the length of the dialog.

The simplest and most efficient test regime is to use a

simulated user. This enables wide coverage of the space of

possible dialogs, with a variety of scenarios and the ability

to vary the effective recognition error rates over a wide

range [131]–[133]. An obvious disadvantage, of course, is
the potential discrepancy between the behavior of a simu-

lated user and the behavior of real users. Nevertheless,

user simulation has been a very common way to evaluate

different POMDP approaches [28], [124].

As an illustration, Fig. 6 reproduces the results from

[28]. Three different dialog managers were evaluated with

a simulated user at varying noise levels. These were a

handcrafted deterministic dialog manager that takes only
the most likely input from the simulated user (HDC), the

BUDS dialog manager (Section III-B) with a hand-coded

policy (BUDS–HDC), and the BUDS dialog manager with

a policy trained using NAC (BUDS–TRA) (Section IV-E).

The systems operate in a tourist information domain,

where the users may ask about hotels, restaurants, bars,

and amenities in a fictitious town. The reward function is

defined as 20 for a successful dialog minus the dialog
length.6 The confusion rate is defined as the probability of

a semantic concept from a hypothesis passed to the dialog

manager being incorrect. A dialog is successful if a suitable

venue was offered and all further pieces of information

were given. The results in Fig. 6 highlight some important

features of the different managers. First, at low error rates,

all managers perform equally well, but at higher error

rates, the BUDS systems are clearly more robust to noise.

By using belief tracking, the BUDS dialog manager is bet-

ter able to handle conflicting evidence from different dia-
log turns. Second, the BUDS manager with the trained

policy gives further improvement compared to the BUDS

system with a handcrafted policy, indicating that policy

optimization via reinforcement learning is effective.

The second commonly used evaluation regime is to

recruit human subjects to test the systems, with the aim of

providing more realistic dialogs. Until recently, this has

typically been done in a laboratory setting, where paid
subjects are given predefined tasks, instructed to talk to

the system in a particular way and then asked to rate the

dialogs. For example, systems using the POMDP approach

have been evaluated in this way, and improvements have

been demonstrated relative to hand-coded or MDP base-

lines [28], [49], [134]. Setting aside the issue of how re-

presentative paid subjects are of real users, a major

problem with this approach is the difficulty and expense of
recruiting sufficient subjects. The recent emergence of

crowdsourcing and the ability to transport audio with

minimal latency over the Internet, has greatly mitigated

this problem. For example, in [135], the Amazon Mecha-

nical Turk service was used to recruit subjects and pro-

vide them with predefined tasks and basic instructions.

Subjects then called the dialog system via a toll-free tele-

phone number and provided feedback after each dialog.
This now provides an effective way of collecting a large

number of human–computer dialogs in order to achieve

statistically significant results [136]. However, the use

of crowdsourcing does not address the issue of how

Fig. 6. Comparison between the BUDS POMDP-based dialog

manager with a handcrafted policy (BUDS–HDC) and a trained policy

(BUDS–TRA), and a conventional handcrafted deterministic dialog

manager (HDC) as a function of simulated confusion rate. Each point

gives the mean reward for 5000 simulated dialogs. Error bars show

one standard error on each side of the mean. Taken from [28].

6This is equivalent to giving a reward of �1 in all nonterminal states
and þ20 in all terminal states which denote success.

Young et al. : POMDP-Based Statistical Spoken Dialog Systems: A Review

Vol. 101, No. 5, May 2013 | Proceedings of the IEEE 1173



representative paid subjects are of real users. Indeed,
without the ability to monitor subjects in a laboratory

setting, the problems of motivation and attention are

exacerbated. Furthermore, there is evidence to suggest that

crowdsourced subjects do not rate their dialog experience

accurately [117].

The final evaluation regime is to test systems in the

field with real users. This normally requires partnership

with a commercial provider or the setting up of a service
that the public are naturally motivated to use. Neither of

these is easy to arrange and, as a response to this problem,

CMU has set up an evaluation framework called the

Spoken Dialog System Challenge. This utilizes a live

service for providing bus information for Pittsburgh, PA,

where users are able to call the system and ask for bus

information. This service has been provided for some years

using human agents during office hours, and by providing a
fully automated out-of-hours service, a genuine user

demand has been created which by default is serviced by

a baseline spoken dialog system designed by CMU, but

which can be substituted by other systems for testing. As

an example, in the 2010 challenge, a number of systems

were tested, first by a cohort of students to ensure that the

systems were sufficiently robust to put before the public

and then they were tested in the live service. Two of those
tested were based on the POMDP framework.

The summary results are shown in Fig. 7, taken from

[8], where the logistic regression of dialog success was

computed against word error rate (WER) for each of the

systems. It can be seen that the hand-coded baseline

system ‘‘sys1’’ is slightly better at low error rates which was

to be expected given the long period of development and

refinement of that system. However despite the very short
development times of the other two POMDP-based sys-

tems, both were more robust on high noise levels than the
hand-coded baseline system.

X. HISTORICAL PERSPECTIVE

The first reference to the use of POMDPs in spoken

dialog systems is thought to be Roy et al. in 2000 [9] and

Zhang et al. in 2001 [137]. However, some of the key ideas

were being explored before then. The idea of viewing

dialog management as an observable Markov decision pro-

cess (MDP) and optimizing a policy via reinforcement
learning is due to Levin and Pieraccini [138], [139]. This

work was quickly developed by others [45], [46], [48]–[51],

[130], [140]–[151]. However, the use of MDP approaches

lost momentum as it became apparent that the lack of any

explicit model of uncertainty was limiting performance,

and although the generalization to POMDPs was known,

their use appeared to be intractable for real-world systems.

The first reference to the need for an explicit representa-
tion of uncertainty in dialog is believed to be Pulman in

1996 who proposed modeling dialog as a conversational
game [152]. Soon after, Heckerman and Horvitz [153],

Horvitz and Paek [154], and Meng et al. [155] showed how

Bayesian networks could be used to provide more robust

conversational structures.

XI. CONCLUSION

The development of statistical dialog systems has been

motivated by the need for a data-driven framework that

reduces the cost of laboriously handcrafting complex dia-

log managers and which provides robustness against the
errors created by speech recognizers operating in noisy

environments. By providing an explicit Bayesian model of

uncertainty and by providing a reward-driven process for

policy optimization, POMDPs provide such a framework.

However, as will be clear from this review, POMDP-

based dialog systems are complex and involve approxima-

tions and tradeoffs. Good progress has been made but there

is still much to do. There are many challenges, most of
which have been touched upon in this review such as

finding ways to increase the complexity of the dialog

model while maintaining tractable belief tracking; and

reducing policy learning times so that systems can be

trained directly on real users rather than using simulators.

Down the road, there is also the task of packaging this

technology to make it widely accessible to nonexperts in

the industrial community.
There are other challenges as well. The POMDP

framework depends critically on the notion of rewards. In

principle, this is a key benefit of the approach since it

provides an objective mechanism for specifying dialog de-

sign criteria. However, the problem in practice is that it is

very difficult to extract reliable reward signals from users.

Even the simple success/fail criterion is difficult to

Fig. 7. Logistic regression of dialog success versus word error rate

(WER) for the three systems subjected to live testing in the 2010

Spoken Dialog Challenge. Sys3 and Sys4 were POMDP-based systems

and Sys 1 was a hand-coded system. Taken from [8].
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compute since even if asked ‘‘Did the system give you all
that you asked for?’’, many users will say ‘‘Yes’’ regardless

just to be polite, or ‘‘No’’ because they had completely

unrealistic expectations of what the system can do for

them. Reward functions based on user satisfaction as pre-

dicted by a regression on objectively measurable features

such as in the PARADISE framework [128] may mitigate

this problem and need to be explored further [129], [130].
However, much of the experience to date suggests that

online learning with real users will not be truly effective

until robust biometric technology is available that enables

the emotional state of the user to be accurately measured

[117]. In the meantime, there is no shortage of further

areas to develop and explore. h
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